A yield model for Carihhean Pine in Uganda

Based on 2003-20I7 data from Global Woods estates at Kikonda, Uganda

Author: Denis Alder

25 September 2017

[^0]This report presents a growth and yield model for even-aged plantations of Caribbean Pine (Pinus caribaea var. hondurensis) grown in Uganda on the estates of Global Woods (GW), at Kikonda Forest Reserve. The model is an update of one published in 2003 (denisalder.net/pdf/uymdoc.pdf), incorporating new data from permanent sample plots (PSPs) established in forests planted from 2002-2017 using improved seed and silviculture.

The PSPs are of circular design, $250 \mathrm{~m}^{2}$, with all trees measured for diameter at $1.3 \mathrm{~m}(\mathrm{dbh})$, two largest diameter trees for dominant height, and three other trees systematically for mean height. There were 357 plots in the analysis, with 1247 plot x measurements, and ranged in age from 2 years to 15 years. In total, there were 21,579 tree measurements included in the analysis.

Height growth on the PSPs was found to follow the site index curves of the 2003 model. However, whereas in 2003 the old forest at Kikonda had an average site index of 12.7 m , with the new GW plantings using improved Queensland seed, average site index was 20 m , with a range from $17-23 \mathrm{~m}$. This represents a substantial increase in yield with improved seed and silviculture.

New taper functions had been developed by GW in 2015. For the present model, these were encoded in VBA for Excel and incorporated to calculate volumes over and under bark to variable user-specified top diameters and minimum log lengths.

Stand structure was represented in the model by five quintiles or cohorts, representing the $10 \%, 30 \%, 50 \%, 70 \%$ and 90% points of the diameter distribution. A function of quintile diameter was developed dependant on dominant height (as a site-scaled metric of age), quintile percent (as a proxy for competitive status), and stand mean spacing. This function had an R^{2} of 93.7% with 6,220 data points (plots, measurements, and quintiles). This equation was used directly to estimate the initial diameter distribution, and in finite difference form as a diameter increment function to update the cohort diameters in each one-year time step.

To allow the taper function to be applied to diameter cohorts, a diameter-height allometric model using stand quadratic mean diameter (mean basal area diameter), cohort diameter, and stand dominant height to predict cohort height was developed.

The model allows thinnings of varying intensity with a bias to smaller trees (low thinning), and calculates an adjusted residual diameter distribution and thinnings diameter distribution accordingly. Thinning bias depends on thinning intensity, being more marked with lighter thinning.

The model is constructed as an Excel workbook with VBA macros. The user can specify simulation from planting or actual stand data, and may specify variable thinnings and merchantable volume criteria. The output includes age, dominant height, basal area, diameter distribution quintiles, total volume, merchantable volume in 2 classes, mean annual volume increment, thinning numbers, diameter distribution and volumes.

The report includes model code in VBA and some versions of the functions and R code used to generate graphs of functions and data in the report. This is an interim report and will be updated with additional material on compatibility functions for the FORSAT model in the near future.

Table of Contents

Executive summary 2
Table of Contents 3
Acknowledgements 4
List of abbreviations and acronyms 4
Software trademarks 4
Algebraic and forestry symbols 5
Disclaimer.. 5
Introduction 6
Background 6
Approach to analysis 6
Logical structure of the model 7
Data for the model 8
The permanent sample plot data 8
Data structures and preliminary calculations 8
Height growth and site index 10
Dominant height 10
Mean height and Lorey's height 10
Site Index and the dominant height-age curve 10
Height-diameter function 11
Diameter growth and distribution 13
Diameter growth model 13
Diameter increment 14
Tree volume and stem taper 15
Ata Marie Taper Functions 15
Performance of the taper model. 16
Stand density, thinning and mortality 17
Self-thinning 17
Stand density index 17
Thinning ratio. 18
Model Integration and User Guide 19
Appearance of the model19
Input Options 19
Volume specifications 20
Thinning specifications. 20
Conclusions 22
References 24
Annex A : Terms of Reference 25
1 Background 25
2 Key tasks 25
3 Deliverables 26
4 Timeline 26
Annex $B: R$ code used for analysis and graphics 27
Annex C: Workbook structure and VBA code for the model 31
Module GrowthFunctions 31
Module MainProgram 33
Module TaperFunctions. 39

Acknowledgements

This report was prepared under the direction of Matthias Baldus, Chief Executive, Global Woods, Uganda. Data collection, cleaning and primary analysis were supported by Blessing Mutambukye, Senior Forestry Officer, Global Woods. Data analysis, model building and report writing were undertaken by Denis Alder of Valid International.

List of abbreviations and acronyms

Software trademarks

Excel, Access, Word and Visual Basic, where used as proper nouns, are acknowledged as are trademarks of Microsoft Corporation.

Algebraic and forestry symbols

The following list gives the standard algebraic symbols used in the text. As far as possible we have followed the recommended standards of IUFRO. Units used are shown in brackets.

AAn asymptotic coefficient, used in various equations
aIntercept coefficient in a 2 -parameter regression equation
bSlope coefficient in a 2-parameter regression equation
dTree diameter at breast height (1.3 m) in cm.
D_{g}. Stand mean basal area (or quadratic mean) diameter (cm).
$\mathrm{d}_{\mathrm{q} D i a m e t e r ~ c o r r e s p o n d i n g ~ t o ~ a ~ p e r c e n t i l e ~}^{\mathrm{q}}$ of the diameter distribution
e............The mathematical constant 2.71828...

FA cumulative frequency
f............Form factor
$f(x)$.........Any function of x
GStand basal area ($\mathrm{m}^{2} / \mathrm{ha}$)
g...........Tree basal area (m^{2})
h...........Individual tree height (m)
H_{10}.......Dominant height at a specified age, eg. 10 years.
$\mathrm{H}_{\mathrm{d}} \ldots$. Stand dominant height (m)
$\mathrm{k} \mathrm{A}$ shape coefficient, used in various equations
m. A scale coefficient, used in various equations
nNumber or count of items, eg. number of trees on a plot.
NStocking, or trees per ha.
PA probability or proportion
p...........Percentile point of a probability or frequency distribution
q. A quintile, or one of 5 designated percentiles from a distribution
SSite index, generally H_{d} at a specified base age.
tStand age, in years.
Δ...........finite difference, annual change [delta]
Σ...........Summation operator [sigma]
α...........Intercept coefficient in linear equation forms [alpha]
β...........Slope coefficients in linear equation forms [beta]
π...........The mathematical constant 3.14159... [pi]
θ...........Logit transform of q or $\log _{e}(q /(1-q))$ [theta]
ζ..........Stand density, either as mean spacing or SDI [zeta]

Disclaimer

This report details research undertaken over a short time line and deals with complex statistical analysis of uncertain data. As such, it may, despite the best endeavours of the authors, contain errors and omissions. Additionally, projections from this material are instantiations of probability functions and inherently subject to uncertainty. Users should bear these factors in mind in applying the results and mitigate risks accordingly. Valid International Ltd necessarily disclaims any responsibility for outcomes arising from the use of this report or the models, functions and equations presented in it.

Background

This report details the development of a management tool for estimating the growth and yield of Caribbean Pine (Pinus caribaea) grown at the estates of Global Woods AG, near Kikonda, Uganda, situated at about $1^{\circ} 12^{\prime} 31^{\prime \prime} \mathrm{N}, 31^{\circ} 33^{\prime} 35^{\prime \prime} \mathrm{E}$, at an altitude of $1,115 \mathrm{~m}$, on the Kampala-Hoima Road. The Terms of Reference (TOR) for the study are given in Annex A.

As the TORs detail, the study is intended to be an update to the model developed by Alder et al (2003). That model operated as an Excel spreadsheet, using various VBA macros to provide the bespoke modelling functions. The 2003 model was based largely on temporary plots in older pine stands, and on wholetree volume functions derived in 1989-91. For the present update, permanent sample plots (PSP) established and remeasured by GW over the period 2003 to 2017 were available, providing a much stronger basis for analysing dynamic trends. Additionally, it was desired to incorporate tree taper functions developed for GW by Ata Marie (AM) forestry consultants in 2015 (Ata Marie,

Figure 1 : Location of General Woods plantations at Kikonda,
 2015), instead of the 1989-91
whole tree volume equations used in the 2003 model.
These different features meant that, rather than simply re-calibrating the 2003 model for the new data, a partial re-design of the system was necessary to incorporate some extra techniques. However, as far as possible, the look and feel of the 2003 model has been retained as indicated in the TOR. It is therefore packaged as a single spreadsheet representing the projected growth for a single even-aged stand. This can be done either from the time of planting, or for older stands, from a base of known age, height, and stocking, and optionally, diameter distribution.

Approach to analysis

The original permanent sample plot data were provided as a series of Excel workbooks from years 2009 to 2017, but including previous measurements back to 2002 for some of the older plots. These data were extracted into a single workbook, and then exported to a MySQL database for data checking and reconciliation. A copy of the clean database was also made in Access for provision to GW.

For analysis purposes, the R statistical system was used. R is a powerful statistical package and programming language that is open-source, freely available and widely used by many research institutions and universities. Information and downloads for various operating
systems (Windows, Apple OS, Linux) are available at the site R-project.org. All the graphics in this report (except a few copied from the 2003 report for comparison) have been produced in R, with the relevant code included in Annex B.

The detailed analysis for the growth functions are described in the respective sections. These were generally tested in R, and then re-written in VBA to work with the Excel model. The VBA code for the model is listed in Annex C.

In general, the methods followed in this report are consistent with the considerable literature on the empirical modelling of even-aged forest plantations, which is summarised in textbooks such as Clutter et al (1983) and Burkhart and Tomé (2012). It is also consistent with the author's past contributions in this field, notably Alder $(1979,1980)$, Alder \& Montenegro (1999).

Logical structure of the model

An overview of the logical structure of the model is illustrated in Figure 2. There is an initialisation phase, when parameters supplied by the user are read and various internal variables set up. The model then moves into an annual loop of repeated processes. Firstly, stand dominant height is calculated from a height-age function. Then, diameter increment is calculated, relative to the existing forest stock. This is influenced by the current dominant height, the stand density, and the competitive position of the cohort. The growing stock for the model is divided into 5 cohorts of similar size, each representing 20% of the trees. Mortality due to intertree competition is calculated. Then any harvesting due, in the form of thinnings,

Figure 2: Overview of model structure
 are estimated. This involves adjustment of the diameter distribution to allow for the fact that a silvicultural thinning will be biased to remove smaller trees. During these processes, the output worksheet is updated with current age, height, mean diameter, diameter quintiles (20% fractions of the diameter distribution), standing volume. merchantable volumes, and volumes and numbers of thinnings. Mean annual increment of volumes, both total and merchantable, are also calculated. All processes are carried out by VBA code, with inputs from and outputs to a single Excel worksheet. The entire software is listed in Annex C.

Data for the model

The permanent sample plot data

The main data source used for this model were permanent sample plots established in the compartments of GWs forest lease at Kikonda Forest Reserve. The plots are of 250 m 2 circular design (8.92 m radius), and are measured annually or biannually for diameter at 1.3 m height (dbh). The two largest trees are measured for height, whose mean is dominant height. Additionally, 3 other trees across a range of diameters are measured to estimate mean height.

At the time the data analysis commenced, in July 2017, there were 357 PSPs in the data set. The distribution of observations by age is shown in Figure 3. The oldest plots were 15 years of age (2002-2017). In all there were 1247 plots x measurements, with 21,579 tree measurements, an average of 17 trees per plot per measurement. These data refer only to PSPs in Caribbean Pine.

The data was provided in the form of Excel worksheets and was combined for analysis purposes into two linked tables. During this reformatting process, data was screened for errors, with various corrections being made to plot identification, heights and diameter. Some data, which could not be corrected, were excluded from the analysis, but these were relatively few in number. The above statistics, and those presented further on, refer only to cleaned data admitted for analysis.

Data structures and preliminary calculations

In the first stage of importation from Excel, raw data tables were created in MySQL, which were later exported to Access as a reference dataset for archival. The structure of these tables were as shown in Figure 4. The plots table contains one record per plot (plotid) and measurement year ($m y r$), with year planted ($p y r$), forest block and compartment (cpt), GPS coordinates ($g p s x, g p s y$), measurement date, and a reference to the original Excel data file (fileid) and coordinate reference system (CRS, crsid). In the end it was found that only one CRS is used throughout (UTM zone 36 N , WGS 84), so this latter information is essentially invariant.

For the individual tree measurements, plot and measurement year were used as linking data for the correct header record, then tree number (treeno), species code (species), diameter at 1.3 $\mathrm{m}(d b h)$, total height $(h t)$, type of height measurement (htype) and originating Excel data file (fileid) were recorded.

Calculations were then made in MySQL to produce plot-level statistics commonly required for forest growth and yield analysis. At the same time, non-Pinus caribaea data were filtered out. Pinus caribaea (PC) accounted for 93% of the PSP dataset, with the remained comprising Eucalyptus (3.6\%), Maesopsis eminii (1.0\%), and Pinus oocarpa (2.2\%). For this report, in all figures and tables, only PC data is included.

The plot summary file was then exported to R, together with a tree list for each plot. The data structure of the plot summary is shown in Figure 5. nha is the stocking stems per hectare, gha is the basal area in $\mathrm{m} 2 / \mathrm{ha}, d g$ is the diameter of the mean basal area tree, or quadratic mean diameter, in cm, hdom is dominant height, in m, and $h l o r$ is Lorey's mean height, in m.

The diameter list for each plot was analysed to derive 5 percentile diameters for each plot, or quintiles, for the $10 \%, 30 \%$, 50% (median), 70% and 90% points of the diameter distribution. The function getDiamQuantiles in Annex B was written to do this, making the transformation as illustrated in Figure 6.

Figure 6 Processing diameter list to get diameter quintiles by plots

Diameter quintiles were selected as five points of the cumulative diameter distribution, at the $10 \%, 30 \%, 50 \%, 70 \%$ and 90% frequency points. The 10% point, for example, is a diameter such that 10% of trees will be smaller, and 90% larger. The 50% point is the median of the distribution, with half the trees smaller, and half larger. These quintiles were used to represent stand structure, providing both a compact description of the diameter distribution, and a method of analysing diameter increment in a situation where individual trees were not uniquely identified in the PSPs between successive measurements. The quintiles also represent cohorts of trees of similar competitive status, and are therefore compatible with the wide family of cohort-based forest models (Burkhart \& Tomé, 2012). The methodology was adapted from Alder's (1979) model for East African conifers.

Height growth and site index

Dominant height

Tree and stand height are key variables for forest growth and yield estimation. Stand height is usually indicated by dominant height, which is the mean height of the dominant trees. There are various definitions, but a common one is the mean height of the 100 largest diameter trees per ha (West, 2009). Dominant height is an important indicator of site productivity, and provides a metric that is largely independent of stand density (unlike stand mean height) and incorporates effects of both site productivity and stand age.

For the GW PSP dataset, the two largest diameter trees on each $250 \mathrm{~m}^{2}$ plot were measured for height. This corresponds to 80 trees per ha, a little less than the conventional definition of 100 trees/ha, but close enough to be effectively the same.

Mean height and Lorey's height

On the PSPs, three additional trees over a range of diameters were measured to provide a basis for estimating mean height. Mean height is influenced by stocking, tending to be less at lower stocking, and as such is rarely used as a key variable in stand modelling. Lorey's height is the mean height weighted by tree basal area or diameter squared (which has numerically the same effect). For the present study, Lorey's height was calculated, as shown in Figure 5 in the column h Lor but neither arithmetic mean height nor Lorey's used in the analysis.

However, these additional height trees are extremely important for development of the height-diameter relation that is necessary to apply the volume taper model for stand volumes. This is discussed in the section on height-diameter function.

Site Index and the dominant height-age curve

Site Index is defined as dominant height at a given base age, and is a key indicator of site productivity. For the 2003 Uganda Caribbean Pine model (Alder et al., 2003) a base age of 10 years was selected after the usage of Kingston (1972), and site index curves developed based on the Chapman-Richards function. Those curves used a composite of datasets including curves developed by Kingston (1972) and temporary sample plot data from the UFRP inventories of 1989-91, and covered stands from 2 to 32 years of age.

The same system of site index curves were plotted with the GW PSP data (Figure 7). It can be seen that they provide a very good fit to the data. It is notable however, that with the original datasets, median site index for Uganda was about 14 m , whereas for the GW data, it is around 20 m . This reflects the fact that the GW stands were established with improved seed and have been more carefully managed. Indeed, in Table 3 of the 2003 report, Kikonda FR is shown as having a median site index of only 12.7 m , so the improvement in growth rates with the new hybrids planted by GW is considerable.

As the 2003 model continues to provide a good fit to the height-age-site index trends, it was adopted for use in the current model without modification. The original equations and their derivation are described in the 2003 report, but they are reproduced here for reference and completeness.

Figure 7 : Height growth from PSPs and site index curves
Blue lines are PSP data, Red lines are the site index model, site index values shown at right

The dominant height-age function is given by:

$$
\mathrm{H}_{\mathrm{d}}=\mathrm{A} \cdot[1-\exp (-\mathrm{k} \cdot \mathrm{t})]^{1 /(1-\mathrm{m})}
$$

where:

$$
\begin{aligned}
& \mathrm{m}=-0.01784 \mathrm{H}_{10}+0.4847 \\
& \mathrm{k}=0.0606 \\
& \mathrm{~A}=\mathrm{H}_{10} /[1-\exp (-\mathrm{k} .10)]^{1 /(1-\mathrm{m})}
\end{aligned}
$$

In these equations, A, m and k are coefficients, H_{d} is dominant height, and H_{10} is site index or dominant height at the base age of 10 years.

In Annex B, the R function sicurv(age, si) calculates dominant height for a given age, using equation 1 above. In Annex C the equivalent VBA function is given for use in Excel, called Hdom (age, si). There is also a VBA function to calculate site index, given height and age, getSI (hdom, age). Both the VBA functions can be used as worksheet functions in Excel. The VBA functions form part of the model, whilst the R version was used during analysis.

Height-diameter function

The height-diameter function predicts individual tree height given its diameter. It is used as part of the volume calculation process, to calculate the height for each of the cohorts (quintile diameters) in the model so that the volume taper function could be applied. The relationship between height and diameter for individual trees within a given stand depends on the mean height and diameter of the stand. After some experimentation, and bearing in mind variables that were available to use within the model, the best relationship was found to be:

$$
\mathrm{h}=\mathrm{H}_{\mathrm{d}}\left(0.5385065+0.3713323 * \mathrm{~d} / \mathrm{D}_{\mathrm{g}}\right) \quad\{\text { eqn. } 2\}
$$

where h is individual tree or cohort height, H_{d} is dominant height of the stand, d is individual tree or cohort dbh, and Dg is quadratic mean diameter. This equation had an R^{2} of 95.2% and standard error of predicted height value of 1.2 m . There were 6,121 height-diameter observations in the regression. In the VBA code for the model, it is represented by function treeHeight ($H d, d g, d b h$), the parameters being, respectively, dominant height, quadratic mean diameter, and tree or cohort dbh.

Diameter growth and distribution

Diameter growth model

Diameter development over time was modelled as a function of dominant height, stand density and competitive status. In this relationship, dominant height is used as a combined variable for stand age and site. Competitive status was taken as the quantile position, such as the $10 \%, 30 \%, 50 \%$ etc fraction of the stand, and therefore corresponding to the P -values of the diameter quintiles. Stand density was measured as mean spacing per tree, or $\sqrt{ }(10,000 / N), N$ being trees per hectare.

The function fitted by regression, after some experimentation with different models, was:

$$
\left.\ln (\mathrm{d})=\beta_{0}+\beta_{1 . \eta}+\beta_{2} \cdot \zeta+\beta_{3} \cdot \theta+\beta_{4 . \eta} \cdot \theta+\beta_{5 \cdot \eta} \cdot \zeta+\beta_{6} \cdot \theta \cdot \zeta+\beta_{7 \cdot \eta} \cdot \theta \cdot \zeta \quad \text { \{eqn. } 3\right\}
$$

where:
d is cohort or quintile diameter, in cm
$\beta_{0} \ldots \beta_{7}$ (beta) are coefficients fitted by regression, as shown in the table at the right
η (eta) is a transformation of dominant height H_{d}, in m: $\eta=1 / \sqrt{ } H_{d}$
θ (theta) is the logit transformation of the quantile q of the diameter distribution that the cohort represents: $\theta=\ln (\mathrm{q} /(1-\mathrm{q}))$
ζ (zeta) is stand density, as mean tree spacing in m, from stems per hectare N :

$$
\zeta=\sqrt{ }(10000 / \mathrm{N})
$$

This equation, although it looks complex, is simply a form of the Schumacher equation:

$$
\ln (y)=a+b \cdot x^{-k}
$$

(Burkhart \& Tomé, 2012, p. 116), with interaction terms for competitive status θ and stand density ζ. The regression fitted with an R^{2} of 93.7% to 6,220 data points (357 plots, 1244 plots x measurements, 5 diameter quantiles per plot). All the coefficients are very highly significant at $\mathrm{P}<0.001$.

Figure 8 shows the shape of the curve for the various quintiles of the diameter distribution, overlaid on the PSP data set, with colours corresponding to quintiles (red 10% shading through yellow 50% to green 90%). In this graph, the sample plot data for all stand densities are included, whereas the function plots (black lines) are only for a single density, of 3.5 m (816 trees per ha). The plot is produced using the R function draw. diamGrowth listed in Annex B.

The VBA function $q \operatorname{Diam}(H d, q p, n h a)$ in Annex C calculates diameter for a given dominant height Hd , quintile point qp , and stocking of nha trees per ha. This can be used as a worksheet function if required.

Equation 3 predicts diameter, and is premised on constant stocking over the history of the stand. It can be used to initialise the diameter distribution at a given point in time (assuming prior constant stocking). To reflect the dynamic effect of thinnings and changes in stand density over time, a diameter increment function is required.

Figure 8: Quintiles of diameter distribution as a function of stand dominant height. The plotted function (black, equation 3) is for stands of 3.5 m spacing (816 tph) whereas the data includes all densities. Colours correspond to diameter distribution quintiles.

Diameter increment

$$
\mathrm{d}_{\mathrm{q}}=\mathrm{f}_{3}\left(\mathrm{H}_{\mathrm{d}}, \mathrm{p}_{\mathrm{q}}, \mathrm{~N}\right)
$$

Equation (3) must be differentiated with respect to time to estimate diameter increment. This is done in the model by a finite difference method in the VBA function qDiamInc. Equation (3) can be re-written as:
with d_{q} being the diameter for quintile $\mathrm{q}, \mathrm{H}_{\mathrm{d}}$ is stand dominant height at a given point in time $\mathrm{t}, \mathrm{p}_{\mathrm{q}}$ being the corresponding percentile point in the diameter distribution ($10 \%, 30 \%$ etc), and N the stocking in trees per ha.

The site index equation (1) can also be shown in simplified form as:

$$
\mathrm{H}_{\mathrm{d}}=\mathrm{f}_{1}(\mathrm{t}, \mathrm{~S}) \quad\{\text { eqn. } 5\}
$$

where t is stand age and S is site index.
Annual diameter increment $\Delta \mathrm{d}_{\mathrm{q}}$ for a cohort can therefore be calculated by combining these equations:

$$
\Delta d_{q}=f_{3}\left(f_{1}(t+1, S), p_{q}, N\right)-f_{3}\left(f_{1}(t, S), p_{q}, N\right)
$$

This calculation is carried out in VBA function qDiamInc listed in Annex C.
In the model, equation (3) is used to estimate diameters for the first year, as part of the initialisation process. Thereafter, diameter increments are calculated from equation (6) and added to the previous year's diameter for that cohort. In this way, dynamic effects on diameter distribution due to harvesting are preserved.

Tree volume and stem taper

Ata Marie Taper Functions

In the 2003 Caribbean Pine model (Alder et al, 2003), stand volume functions were developed based on tree volume measurements made as part of the UFRP 198991 inventory (Alder, 1990). However, for the present update, local and current volume and tree taper functions developed in 2015 for GW by Ata Marie forestry consultants (Ata Marie, 2015) were used. These were provided in the form of printed equations in the report, and had to be coded and tested for use in the model. Both R and VBA versions of the functions were developed and are listed in Annexes B and C.

The use of the taper models imposed constraints on the design of the model. Whilst the 2003 model used stand-based functions, and could therefore be relatively simple in design, the current version necessarily had to predict heights and diameters by cohorts, in order to use these tree-based taper models. This added flexibility and power to the model, but also increased complexity.

Table 1 below shows the R and VBA functions developed based on the Ata Marie taper model.

Table 1: Functions implemented in R and VBA based on the Ata Marie taper models

Function description	R version Annex B	VBA (Excel) version Annex C
Function returns diameter overbark (dob) at a point hm metres above ground for tree of ht m total height and $\underline{\mathrm{dbh}} \mathrm{cm}$ diameter at 1.3 m . Note the R and VBA versions have parameters in a different order.	dobTaper(hm, ht, dbh)	dobTaper(ht, dbh, hm)
Returns diameter inside bark at a specified height. The parameters are the same as for dobTaper. Not coded in R.	n / a	dibTaper(ht, dbh, hm)
Solves for and returns height to specified merchantable top diameter. For both R and VBA versions, ht is tree total height (m) and dbh is tree dbh in cm . For the R version, dob is the required overbark top diameter. For the VBA version, $\underline{\mathrm{dm}}$ is the required top diameter. If $u b$ is 0 or omitted, $\underline{d m}$ is overbark. If $\underline{u b}$ is $1, \underline{d m}$ is underbark top diameter.	hmTaper(dob, ht, dbh)	hmTaper(ht, dbh, dm [,ub])
Volume in m^{3} over bark for a tree of total height ht m and diameter $\underline{\mathrm{dbh}} \mathrm{cm}$. In the VBA version, an optional parameter hm gives merchantable height in m, in which case volume to that height is given. The R version only gives tree total volume.	vobTaper(ht, dbh)	vobTaper(ht, dbh [, hm])
As for vobTaper above, except gives volume inside bark.	vibTaper(ht, dbh)	vibTaper(ht, dbh [, hm])

The R versions were used primarily for testing and graphical analysis, and are available for developing possible regression models involving volume or merchantability criteria from the PSP dataset. The VBA versions are those used in the stand model. The hmTaper function for
deriving merchantable from top diameter uses a numerical solution method. In the R version, it uses the uniroot library function. In the VBA version, a bisection algorithm (Stark, 1970) has been implemented. All the VBA functions can be used as simple Excel worksheet functions provided the TaperFunctions module, as listed in Annex C, has been attached and macros enabled.

Performance of the taper model

To test the taper functions, whole tree volumes were calculated with them and compared with the tree volume equations used in the 2003 Pinus caribaea model. Table 2 and Figure 9 shows the results. A range of diameter and heights were used representative of the spread of the PSP data, and cylindrical volumes calculated from them. The 2003 equations are simple form factors, of 0.420 x cylindrical volume for overbark, and 0.328 for underbark volume. The taper function is a very complex calculation, but the results are closely comparable, with the taper functions giving slightly higher volumes, especially for smaller trees. Figure 9 shows the same information in graphical form.

Table 2 : Comparison of Ata Marie (2015) Taper Equation with Alder et al (2003) volume equations

			2003 Equations		$A M$ Taper Model		Difference \%	
Ht	Dbh	CylVol	Vob	Vub	Vob	Vub	Vob	Vub
10	12	0.113	0.048	0.037	0.058	0.045	21%	23%
10	14	0.154	0.065	0.050	0.078	0.061	20%	21%
10	16	0.201	0.084	0.066	0.101	0.079	19%	20%
15	16	0.302	0.127	0.099	0.139	0.109	10%	10%
15	18	0.382	0.160	0.125	0.174	0.137	9%	9%
15	20	0.471	0.198	0.155	0.214	0.168	8%	9%
15	22	0.570	0.239	0.187	0.257	0.202	7%	8%
15	24	0.679	0.285	0.223	0.304	0.239	7%	7%
20	22	0.760	0.319	0.249	0.327	0.257	2%	3%
20	24	0.905	0.380	0.297	0.387	0.304	2%	3%
20	26	1.062	0.446	0.348	0.452	0.355	1%	2%
20	28	1.232	0.517	0.404	0.522	0.410	1%	2%

Figure 9 Comparison of 2003 volume equations with 2015 taper functions

Stand density, thinning and mortality

Self-thinning

Self-thinning, or mortality cause by overcrowding, occurs at high stand densities. The GW PSP data set has few stands at such high densities. The 2003 model, which incorporated data from older stands, had a self thinning model in the form of the equation:

$$
\mathrm{N}=232093 \mathrm{H}_{\mathrm{d}}{ }^{-1.6055}
$$

Here N is limiting stocking, in trees per ha, and H_{d} is dominant height.
In the absence of better information about self-thinning from the new plantations, this function has been retained for the updated model, and will be found implemented in the VBA function SelfThin(nha, hd), which returns either nha, the current stocking, or a lower value derived from equation (7) if self-thinning occurs. Self-thinning will only happen at densities above those of normal plantation management, but it is retained in the model in order to provide realism if high planting densities or long unthinned rotations are specified.

Stand density index

Reineke (1933) observed that when a graph of stocking is plotted against stand mean diameter on logarithmic scales, self-thinning occurs on lines with a slope of approximately -1.605 . From this the idea of a stand density index (SDI) has been widely adopted (Clutter et al, 1983). The SDI is calculated relative to a base diameter, usually 25 cm dbh, using the relation:

$$
\mathrm{Dg}=[\mathrm{SDI} .251 .605 / \mathrm{N}]^{1 / 1.605}
$$

\{eqn. 8$\}$

Figure 10 : A Log-Log plot of Stocking versus Diameter for the PSP data, with lines of constant Stand Density Index. Self-thinning would probably occur at an SDI of around 1200.

where 25 is the base diameter chosen, and 1.605 is the slope of the self-thinning or Reineke line. Figure 10 shows the stocking-diameter relationship for the PSPs with lines of constant SDI.

Thinning ratio

When a selective thinning from below is applied, as is normal good practice in plantation management, smaller trees are preferentially removed. This has not been analysed empirically for the current model, but an assumed function based on Alder (1979) is applied. This applies a greater thinning bias the lighter the thinning, with heavy thinnings being more uniform in their effect. This function has the form:

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{p}_{\mathrm{i}}^{1 / \mathrm{L}}
$$

where the p_{a} is a percentile of the diameter distribution after thinning for the same diameter point as the p_{i} percentile before thinning, and L is the leave fraction, or ratio of stocking after thinning to stocking before thinning.

Equation (9) is applied in the model to recalculate the percentiles for the remaining stand for the pre-thinning quintiles. A Weibull function is then fitted to these in order to interpolate the diameter points for the standard quintile values $(10 \%, 30 \%, 50 \%, 70 \%, 90 \%)$. The diameter distribution of thinnings is also calculated as the difference between the before and after thinning diameter distributions. These calculations are carried out in the VBA routine doThinning.

ModeI Integration and User Guide

Appearance of the model

This version of the model is constructed as an Excel 2016 workbook with VBA macros. The file is called Uganda GW Pine Model 2017 (v1.2).xlsm ${ }^{1}$. When the workbook is opened it will be seen to have a single sheet called Model, as per the screen shot in Figure 11.

Figure 11 : Screen shot of the model in Excel

4	A	B	c	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	s	T	u															
1	Global Woods Uganda - Forest model for Caribbean Pine Update																																			
2	Initial conditions for projection 1. From planting (per G3:K3)					$\begin{aligned} & \text { Site index } \\ & 20 \vee \mathrm{~m} \end{aligned}$			Planting $1100^{\circ} \mathrm{n} / \mathrm{ha}$ Final year		$\begin{aligned} & \text { Survival } \\ & 85 \% \text {, } \\ & 30 \text { yrs } \end{aligned}$		Merchantable volume Minimum top diam. (m ub) Minimum log length (m)			Class 1	Class 2		Thinning Basis Threshold level Trees to remove		$\begin{gathered} \text { Custom } \\ 600 \\ 33 \% \end{gathered}$															
3						10	20																													
4									2	2																										
6	Crop before thinning			$\begin{array}{cc} & \\ \mathrm{Dg}^{\prime} & \mathrm{BA} \\ \mathrm{~cm} & \mathrm{~m} 2 \mathrm{ha} \\ \hline \end{array}$					Diameter distribution quintiles, cm					$\begin{gathered} \text { Standing Volume m3 } \\ \text { OB, Tot UB, d. } 1 \text { UB, d. } 2 \\ \hline \end{gathered}$			MAI (m3/ha/yr) OB, Tot UB, d. 1 UB, d. 2			Thinning Specs. SDI Ratio ${ }^{\prime}$ N/ha			Thinned Volume (m3) OB, Tot UB, d. 1 UB, d. 2													
7	Age	Hdom	Nha			10\%	30\%	50\%	70\%	90\%																										
8	2	4.1	935	4.9	1.8	3.3	4.1	4.7	5.4	6.6	5			2.3			69																			
9	3	6.3	935	8.7	5.5	6.4	7.5	8.4	9.3	11.0	19			6.4			171																			
10	. 4	8.5	935	12.0	10.5	9.2	10.7	11.7	12.8	14.7	45	12		11.1	3.1		287	20\%	187	7		0	0													
11	5	10.6	748	15.3	13.7	12.3	13.8	15.0	16.3	18.3	67	39		14.8	7.9		339																			
12	6	12.7	748	17.8	18.6	14.6	16.3	17.5	18.9	21.0	104	67		18.4	11.2		433																			
13	7	14.6	748	20.0	23.4	16.6	18.4	19.7	21.1	23.3	145	100		21.7	14.4		522																			
14	8	16.5	748	21.9	28.1	18.4	20.3	21.6	23.1	25.3	191	137	-17	24.7	17.2	2.2	604																			
15	. 9	18.3	748	23.5	32.6	20.0	21.9	23.3	24.8	27.1	240	178	- 41	27.4	19.9	4.6	679																			
16	10	20.0	748	25.0	36.8	21.4	23.4	24.8	26.3	28.6	291	223	79	29.8	22.3	7.9	749																			
17	11	21.6	748	26.3	40.7	22.7	24.7	26.1	27.6	30.0	343	269	-121	31.8	24.5	11.0	813																			
18	12	23.2	748	27.5	44.4	23.8	25.8	27.3	28.8	31.2	396	31	$4 \quad 170$	33.6	26.2	14.2	872	33\%	247	112		89	35													
19	13	24.6	501	29.6	34.4.	26.0	27.9	29.4	30.9	33.1	322	25	-166	33.9	26.8	15.5	656																			
20	14	26.0	501	30.6	36.7	27.0	28.9	30.4	31.9	34.1	361	29	$1 \quad 200$	34.2	27.2	16.8	692																			
21	15	27.4	501	31.5	38.9	27.9	29.8	31.3	32.8	35.1	399	323	229	34.5	27.5	17.6	725																			
22	16	28.6	501	32.3	41.0	28.6	30.6	32.1	33.6	35.9	436	35	4262	34.7	27.8	18.6	755																			
23	17	29.8	501	33.0	42.9	29.4	31.3	32.8	34.4	36.7	473	385	5292	34.8	27.9	19.2	783																			
24	18	30.9	501	33.7	44.7	30.0	32.0	33.5	35.1	37.4	509	415	-321	34.8	28.1	19.8	809																			
25	19	32.0	501	34.3	46.4	30.6	32.6	34.1	35.7	38.0	544	44	4 - 350	34.8	28.1	20.3	833																			
26	20	33.0	501	34.9	47.9	31.2	33.2	34.7	36.3	38.6	577	47	477	34.8	28.2	20.6	856																			
27	21	33.9	501	35.4	49.4	31.7	33.7	35.2	36.8	39.2	610	50	1403	34.7	28.1	20.9	876																			
28	22	34.8	501	35.9	50.7	32.1	34.2	35.7	37.3	39.7	642	528	428	34.5	28.1	21.1	895																			
29	23	35.6	501	36.3	52.0.	32.6	34.6	36.2	37.8	40.1	672	553	-452	34.3	28.0	21.2	913																			
30	24	36.4	501	36.7	53.1	33.0	35.0	36.6	38.2	40.5	701	578	- 475	34.1	27.8	21.3	930																			
31	25	37.2	501	37.1	54.2	33.3	35.4	36.9	38.6	40.9	729	601	$1 \quad 497$	33.9	27.6	21.3	945																			
32	26	37.9	501	37.5	55.3	33.7	35.7	37.3	38.9	41.3	755	62	$4{ }^{5}$	33.6	27.5	21.3	959																			
33	27	38.5	501	37.8	56.2	34.0	36.1	37.6	39.2	41.6	781	646	-538	33.3	27.3	21.2	973																			
34	28	39.2	501	38.1	57.1.	34.3	36.4	37.9	39.5	41.9	805	666	-557	33.0	27.0	21.1	985																			
35	29	39.8	501	38.4	58.0.	34.5	36.6	38.2	39.8	42.2	828	686	$6 \quad 575$	32.6	26.8	21.0	997																			
36	30	40.3	501	38.6	58.7.	34.8	36.9	38.5	40.1	42.5	850	705	592	32.3	26.5	20.9	1008																			

There is a button labelled Update positioned in cell V1. Clicking on this button will run the model with current parameter settings. A warning message appears that the current outputs will be overwritten. Clicking Cancel aborts the update, $\mathbf{O K}$ will clear the sheet and display the recalculated results with current settings. The various specifications for the simulation are in the white areas in rows $2: 4$, and for thinnings, in column R from row 8 .

Input Options

The initial conditions of the stand to be projected or simulated can be defined in three ways, according to the option selected in call A3. These are:
(1) From planting. In this case, the site index should be set in call G3. Appropriate values would be between 17 and 23, with 20 being a median value and suitable default value for Kikonda forest with the improved P. caribaea hybrids planted since 2002. Planted stocking and survival should also be set in cells I3 and K3, with 1111 stems / ha ($3 \times 3 \mathrm{~m}$ spacing) and 85% survival being suggested defaults.

[^1](2) From stocking and dominant height data at a given age. In this case, the initial age, dominant height and stocking should be given in cells A8:C8. The model will calculate site index from this information and over-write any value in cell G3. The planted stocking and survival values in cells I3 and K3 will be ignored and can be blank, which is recommended if the output is to be used in a report. When run in this mode, the diameter distribution at the initial age is estimated from equation (3).
(3) From stocking, dominant height and diameter distribution at a given age. This is as for (2), but additionally the $10 \%, 30 \%, 50 \%, 70 \%$ and 90% points of the diameter distribution are required in cells F8:J8. These can be calculated in various ways, but one simple approach is to list all the diameters for all the inventory plots in the target stand, and then apply the Excel function PERCENTILE.EXC(data-range, percentile) ${ }^{2}$

Apart from these initial conditions, the final year of the simulation should be specified in cell K4. It is recommended that this should not exceed 50 years, as being an unreasonable extrapolation of current data.

Volume specifications

Volume calculations from the model are output in three columns. For the standing crop, these are columns $\mathrm{K}: \mathrm{M}$ and for thinnings, columns $\mathrm{T}: \mathrm{V}$, both from row 8 . Total volume over bark is always shown, and then merchantable volume in two classes. The specifications for these classes are given in P3:Q4. The top diameter under bark must be given. The classes do not have any required order, so class 1 may have a large, smaller or equal top diameter to class 2 . A minimum length can also be given, but this is optional, and may be left blank. If given, trees whose height to the specified top diameter is less than the minimum length will not be counted as part of that merchantable volume class.

Merchantable volume is calculated under bark. It includes a deduction for stump height, set at 25 cm .

Note that the minimum length is not applied by fixed log-length sections like some bucking algorithms. If the minimum is 3 m , and a tree has a merchantable height of 4 m , then the entire 4 m length (less 25 cm stump allowance) will be used. In a bucking algorithm, the excess 1 m would be discarded.

If the under bark top diameters are zero or left blank, total under bark volume to the tip is calculated.

Thinning specifications

Cell U2 has a drop-down list of options for specifying thinning. These allow for no thinning (None), thinning by Basal Area or SDI control, or a custom thinning. If None is selected in cell U2, then any other specifications are ignored, any contents in column R8 downwards will be deleted, and no thinning will be done.

If Basal Area or SDI control are specified, thinning will be done when the threshold value in cell U3 is reached, which may be given in either $\mathrm{m} 2 /$ ha (for Basal Area control) or SDI units. The thinning intensity is given in cell U4.

For Custom thinnings, the values in U3 and U4 are ignored. Instead thinnings are performed at the intensity and age specified according to the entries in column R, from row 8. For

[^2]example, Figure 11 shows thinnings of 20% (1 in 5 stems) at age 4, and 33% (1 in 3 stems) at age 12.

If the Custom thinning is specified as 100%, a clear felling is assumed, and simulation will stop at that point.

This report describes the updating of the Uganda Caribbean Pine yield model from the version of Alder et al (2003) to a current version, specifically applicable to the Global Woods (GW) plantations at Kikonda Forest Reserve using improved hybrids.

For this purpose, permanent sample plot (PSP) data was provided by GW and cleaned and analysed by Valid International (VI). There were found to be 1247 plot-measurement years, with 21,579 tree measurements. The cleaned version of this dataset was archived as an Access database and supplied to GW as a reference copy (see Figure 3).

The site index curves (dominant height on age) from the 2003 model were found to be applicable and have been retained (Figure 7), although the median site index of the new plantings was found to be 20 m , as compared with 13 m on the same site for the previous cycle of plantings with locally collected seed. This represents a very considerable increase in productivity.

A requirement for the new model was to incorporate taper and volume functions developed for GW by Ata Marie (2015), in place of the older UFRP volume functions used in the 2003 model. A comparison (Figure 9 and Table 2) showed that the two give very similar results for whole tree volumes, with the taper functions being some 10% higher (depending on relative dimensions), but the taper functions are much more flexible in use for calculations with constraints on log lengths and diameters. The equations for the taper functions were encoded as R and VBA functions, as listed in Annex B and C, with versions for calculation of merchantable height and volume to different top diameters over and under bark.

To use these equations in the model required a different strategy to the whole stand model based on direct estimation of stand volume from stocking and dominant height used in the 2003 model. Instead a function was developed to predict percentiles of the diameter distribution. The model was structured to use five percentiles (quintiles), representing the $10 \%, 30 \%, 50 \%, 70 \%$ and 90% points of the diameter distribution, following the methodology of Alder (1979). A function to predict these directly at constant stocking, for unthinned stands was developed (equation 3), and then modified as a partial difference equation (equation 6) for use in thinned stands.

The model also required a local height-diameter function to relate tree heights to diameters for stands of a given dominant height and mean diameter (equation 2). This allowed the taper function to be used to estimate volumes for each of the quintiles.

As agreed in the TOR (Annex A), the model was represented in the form of an Excel workbook. The input and output format is shown in Figure 11, and the underlying VBA code for the model is given in Annex C.

During the development process of the current model, GW proposed that it should be compatible with the South African FORSAT estate modelling system. It was not possible to incorporate this objective without additional work, as there are some significant differences in the required functions. However, the scope of the required amendments have now been reviewed and discussed with technical specialists involved ${ }^{3}$, and if the necessary additional work is agreed, a revision to this report will be produced with compatibility functions described in an additional section.

The current version of the model (GW Uganda Carib Pine Model v 1.2) is however fully usable as a planning tool as supplied, and can be combined with inventory summaries to

[^3]produce estate projections using Excel. In this context, it should be a useful addition to GW's forest planning capabilities.

Alder, D (1979) A distance-independent tree model for exotic conifer plantations in East Africa. Forest Science, 25(1) 59-71.

Alder, D (1980) Forest volume estimation and yield prediction : Vol 2 - Yield prediction. FAO Forestry Paper 22/2, 194 pp.

Alder, D (1990) Computer programs for tree volume equations. Uganda Forestry Rehabilitation Project, Internal Report.

Alder, D; Montenegro, F (1999) A yield model for Cordia alliodora plantations in Ecuador. International Forestry Review 1(4) 242-250.

Alder, D; Drichi, P; Elungat, D (2003) Yields of Eucalyptus and Caribbean Pine in Uganda. Uganda Forest Resources Management and Conservation Programme, Technical report, 52 pp. (PDF, 1594 kb)

Ata Marie (2015) Volume and Taper equations for Pinus caribaea in Uganda. Technical report by Ata Marie Group Ltd for Global Woods AG, June 2015, 34 pp.

Burkhart, HE; Tomé, M (2012) Modeling Forest Trees and Stands. Springer, Dordrecht, Germany. ISBN-978-94-007-1597-4. 457 pp.

Clutter, JL; Fortson JC; Pienaar, LV; Brister, GH; Bailey, RL (1983) Timber Management: A Quantitative Approach. John Wiley \& Sons, New York. 333 pp.

Kingston, B (1972) Site index rating for several coniferous species grown in plantations in Uganda. Uganda Forest Department Technical Note. 1972, No.196-72, 13 pp.; 1 ref.

Reineke, LH (1933) Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research, 46(7)627-637.

Stark, PA (1970) Introduction to Numerical Methods. Collier-Macmillan Ltd., London, 334 pp.
West, P (2009) Tree and Forest Measurement. Springer, 2nd. Ed. 191 pp.

Annex A: Terms of Reference

Upgrading of the Uganda Pine Growth Model
 Terms of Reference

1 Background

Global-Woods AG (GW) has some 8,000 ha of plantations established in Uganda near Kikonda, of which some 93\% are Caribbean Pine, and 7\% Eucalyptus. The oldest stands are from 2002. The forest is FSC certified and managed currently with a view to saw log production. The current management tool used for yield forecasting is the model of Alder et al (2003).

GW now wish to update that model to take into account new growth data available from 2002 on their own plantations, and specifically have a model that is sensitive to the effects of thinning, and that also can calculate optimal schedules as well as providing 'what-if' type simulations. The database for the modelling comprises about 320 permanent sample plots (PSPs) of 250 m 2 circular design with approximately annual measurements. There is also an unspecified quantity of temporary sample plots (TSPs). The work would be in two packages, firstly for Caribbean Pine, which comprise the bulk of the estate, and then later on for Eucalyptus.

2 Key tasks

- Review and summarise the PSP and TSP datasets (to be provided as an Access database and ancillary files) and fit revised functions for height, diameter and volume.
- Analyse spacing and thinning responses and develop models particularly that are sensitive to and accurately reflect thinning response.
- Revise the structure and calibration of the model (currently coded in Excel/VBA) to incorporate these updated functions as well as incorporating a revised taper function to be provided by global-woods.
- Add additional code to the model to incorporate a 'goal-seeking' or optimizing mode to find best management practices to maximize production and value to a given minimum size (DBH) or to maximise rate of volume growth per hectare.
- Write a technical report and user manual (one document in two parts) for the model, being particularly clear about the justification of thinning response assumption used.
- Support via skype and email the use of the model. This support would not include updates or extensions to the model, but only its use as originally specified.
- Make any necessary corrections or bug-fixes to deal with problems that may arise during operation.
- The model would be designed to run in MS Excel, compatible with versions 19972003 and 2007-2016 (ie as .xls or .xlsm files).

3 Deliverables

1. The forest model, in the form of an Excel workbook with VBA macros, compatible with Excel 1997-2003 (.xls) and 2007-2016 (.xlsm).
2. A report, comprise technical reference detailing the data analysis and model structure and equations, and a user guide intended for management.

4 Timeline

This work will take place over a total of 15 days over a period of 3 months.

Annex B : R code used for analysis and graphics

R code included here is for figures shown in the report produced in R (the equivalent figure number is commented) and for functions equivalent to those used in the model and referred to in the report.

```
# fitted functions forming part of the model
sicurv <- function(age, si){
    # Uganda P.caribaea height function. Gives height
    # for <age> and site index <si>
    # see p.16 in Alder et al.(2003)
    m<- -0.0178*si + 0.4847
    k <- 0.0606
    A <- si/(1-exp(-k*10))^(1/(1-m))
    h<- A*(1-exp(-k*age))^(1/(1-m))
    return(h)
}
treeHeight <- function(hdom, dg, dbh){
# gives individual tree height (ht, m) from tree dbh (cm), stand dominant height
(Hdom, m)
# and stand quadratic mean diameter dg (cm)
rd <- dbh / dg
            rh <- 0.5385065 + 0.3713323 * rd
            ht <- rh * hdom
return(ht)
}
qDiamHd <- function(hd, qp, mpt){
#static function for diameter quantiles. Returns diameter in cm for
#quantile qp (0-1) of the diameter distribution, dominant height hd m and spacing mpt
m/tree
# regression coefficients
b <- c(4.308092, -5.739368, 0.066883, -0.06563, 0.497234, -0.09821, 0.017257, -
0.049239)
bias <- exp(0.1461 ^ 2 / 2) # Meyer's correction for bias, logarithmic equation
lqp <- log(qp / (1 - qp)) # logit transform for quantile
invh <- 1 / sqrt(hd) # transformation for dominant height
# R formula for regression:
# Lnqd ~ invh + mpt + Lqp + invh.lqp + invh.mpt + mpt.lqp + invh.lqp.mpt
lnD <- b[1] + b[2] * invh + b[3] * mpt + b[4] * lqp + b[5] * invh * lqp +
    b[6] * invh * mpt + b[7] * lqp * mpt + b[8] * invh * lqp * mpt
return(exp(lnD) * bias)
}
# taper equation components from Ata Marie (2015) report
dobTaper <- function(hm, ht, dbh){
# gives Diam overbark hm metres above ground for tree of ht m height and dbh cm
# diameter. See page 11 (sect 3.2, eqn. 3) of report
ltip <- ht - hm
b2 <- 6.28018
g1 <- 4.42443
g2 <- 1.52747
b1 <- (1-(b2/(dbh*ht)^0.3)*(1-1.3/ht)^g2)/((1-1.3/ht)^(g1/ht^0.2))
dob <- sqrt(dbh^2*(b1*(ltip/ht)^(g1/ht^0.2)+(b2/(dbh*ht)^0.3)*(ltip/ht)^g2))
return(dob)
}
hmTaper <- function(dob, ht, dbh){
# gives height to overbark diameter dob for tree total height ht and dbh.
# This is inverse of dobTaper, solved numerically using R uniroot function.
hm <- 0 # default height if function fails
    f <- function(h){return(dobTaper(h, ht, dbh) - dob)}
    try(hm <- uniroot(f, lower=0, upper=ht, tol=0.001)['root'], silent=T)
    return(as.numeric(hm))
}
```

```
vobTaper <- function(ht, dbh){
# whole tree volume overbark
b2 <- 6.28018
g1 <- 4.42443
g2 <- 1.52747
b1 <- (1-(b2/(dbh*ht)^0.3)*(1-1.3/ht)^g2)/((1-1.3/ht)^(g1/ht^0.2))
vob <- 3.14159246 * dbh^2/40000 * ((b1/(ht^(g1/ht^0.2) * (g1/ht^0.2+1))) *
(ht^(g1/ht^0.2+1)) + b2 * ht^(g2+1)/((dbh * ht)^0.3*ht^g2 * (g2+1)))
return(vob)
}
vibTaper <- function(ht, dbh){
# whole tree volume inside bark
b2 <- 6.28018
g1 <- 4.42443
g2 <- 1.52747
a0 <- 0.682537
a1<- 0.524777
a2 <- -0.487183
t1 <- g1/ht^0.2
t2 <- (dbh*ht)^0.3
b1 <- (1-b2/t2*(1-1.3/ht)^g2)/(1-1.3/ht)^t1
vib <- 3.14159246 * dbh^2/40000 * (
                    a0 * b1 / (ht^(t1+0)*(t1+1)) * ht^(t1+1)
    + a1 * b1 / (ht^(t1+1)*(t1+2)) * ht^(t1+2)
    + a2 * b1 / (ht^(t1+2)*(t1+3)) * ht^(t1+3)
    + a0*b2/(t2*ht^(g2+0)*(g2+1))*ht^(g2+1)
    + a1*b2/(t2*ht^(g2+1)*(g2+2))*ht^(g2+2)
    + a2*b2/(t2*ht^(g2+2)*(g2+3))*ht^(g2+3))
return(vib)
}
###############################################################################
########### functions only used for analysis and documentation ##############
draw.taper <- function( ht, dbh){
# test plot of the taper function
# set scales to ht, basal diam rounded to nearest 5
dbase <- dobTaper(0, ht, dbh)
hmax <- floor(ht/5+1)*5
gmax <- floor(dbase^2*0.007854+1)*100 #basal area of tree base in sq cm, rounded up
to nearest 100
# data points of taper function
h <- seq(from=0, to=ht, by=ht/50)
d <- dobTaper(h, ht, dbh)
g <- d^2*0.7854 #basal area in sq cm
tpf <- data.frame(d,g, h)
# create basic plot
a <- data.frame(x=c(0, gmax), y=c(0, hmax))
fig <- ggplot(a, aes(x=x, y=y)) + geom_point(shape=3)
# add taper function
fig <- fig + geom_line(data=tpf, mapping=aes(x=g, y=h), colour='red', size=1.5,
linetype='solid')
# add green lines for total height, dbh
fig <- fig + geom_hline(yintercept=1.3, colour='green',
                                    size=0.5, linetype='solid')
fig <- fig + geom_hline(yintercept=ht, colour='green',
                    size=0.5, linetype='solid')
gbh <- dbh^2*0.7854
fig <- fig + geom_vline(xintercept=gbh, colour='green',
                                    size=0.5, linetype='solid')
# add blue line joining tip of tree to dbh point
fig <- fig + geom_abline(intercept=ht, slope=(1.3-ht)/gbh , colour='blue',
                size=0.5, linetype='solid')
# add captions
    fig <- fig + labs(x="Basal area (sq.cm)", y="Height (m)")
    fig <- fig + ggtitle("Global Woods Taper Function")
    return(fig)
}
# Figure 7 in report
draw.sicurv <- function(pdata){
# draws a system of site index curves using ggplot
```

```
# age range for graph
agemin <- 0; agemax <- 20;
```

```
# SI curve values to be plotted (from, to, by)
simin <- 12; simax <- 24; siby <- 2;
# height scale
hmin <- 0; hmax <- 40;
# initialise the plot
a <- data.frame(x=c(agemin, agemax), y=c(hmin, hmax))
fig <- ggplot(a, aes(x=x, y=y))
    # add data from plots
    fig <- fig + geom_line(data=pdata, aes(x=age, y=hdom, group=plotid), colour="blue",
alpha=0.3)
# draw the height index Lines
alt=T # toggle for alternate thick sold and thin dashed lines
for (si in seq(simin, simax, by= siby)){
        # styles for alternate lines
        if(alt){
            asize = 0.5; astyle="dotted"; acol="red" ; alt=F
        }else{
            asize = 1; astyle="solid"; acol="red" ; alt=T
        }
        fig <- fig+stat_function(fun=sicurv, xlim=c(1, agemax-0.5), args=list(si=si),
colour=acol,
                    size=asize, linetype=astyle)
        h = sicurv(agemax, si)
        fig <- fig + annotate("text", x = agemax , y = h , label = si)
    }
    # title and axis labels
    fig <- fig + labs(x="Age (years)", y="Dominant height (m)")
    #fig <- fig + ggtitle("Figure 7 : Global Woods PSPs on 2003 Site Index Model")
    # return ggplot object as a result
    return(fig)
    }
# Figure 8 in report
draw.diamGrowth <- function(){
# plot of diameter for quantile dq on Hdom with colours for stand density (spacing)
# Maximum spacing to include
fig <- ggplot(data=pdxq[pdxq$qd<40,], aes(x=hdom, y=qd, group=plotidx, colour=qp))
fig <- fig + geom_line(alpha=0.5)
fig <- fig + scale_color_gradient(low="red", high="green")
# title and axis labels
fig <- fig + labs(y="Quantile Diameter (cm)", x="Dominant height (m)")
# draw the height-diameter lines for quantiles
for (pq in seq(0.1, 0.9, by= 0.2)){
fig <- fig+stat_function(fun=qDiamHd, xlim=c(1, 24), args=list(mpt=3.5, qp=pq),
colour="black",
    size=1, linetype="solid")
d = qDiamHd(25, pq, 3.5)
fig <- fig + annotate("text", x = 25 , y = d , label = paste(pq*100, "%"))
}
return(fig)
}
getDiamQuantiles <- function(pdiams){
# goes through the plot summary list and gets the diameter
# distribution quantiles (10%, 30%, 50%, 70%, 905) from the pdiams data frame.
# This should be a list of diameters (dbh) for each plotid and year (age)
# Returns a dataframe with plotid, age, qp (quantile), qd (quantile diameters)
    #
# get list of unique plotid-age values and preallocate output space
pa <- unique(pdiams[,1:2])
L <- length(pa[,1])
Lq <- L*5 # space for 5 quantiles
pdq <- data.frame(plotid = character(Lq), age = numeric(Lq), qp = numeric(Lq), qd =
numeric(Lq), stringsAsFactors = FALSE)
# work through plots and ages
for(r in 1:L){
        # current plotid and age
        this.plotid <- pa[r,1]
        this.age <- pa[r,2]
```

```
                    # get diameter list for current plot and age
```

 # get diameter list for current plot and age
 d <- pdiams[pdiams$plotid==this.plotid & pdiams$age==this.age,'dbh']
 d <- pdiams[pdiams$plotid==this.plotid & pdiams$age==this.age,'dbh']
 # get the quantiles of the diameter distribution
 # get the quantiles of the diameter distribution
 p<- c(0.1, 0.3, 0.5, 0.7, 0.90)
 p<- c(0.1, 0.3, 0.5, 0.7, 0.90)
 q <- quantile(d, probs=p, na.rm=T)
 q <- quantile(d, probs=p, na.rm=T)
 # copy them into the correct row position of output dataframe
 # copy them into the correct row position of output dataframe
 for(j in 1:5){
 for(j in 1:5){
 k<-(r - 1)*5 + j
 k<-(r - 1)*5 + j
 pdq[k,1] <- this.plotid
 pdq[k,1] <- this.plotid
 pdq[k,2] <- this.age
 pdq[k,2] <- this.age
 pdq[k,3] <- p[j]
 pdq[k,3] <- p[j]
 pdq[k,4] <- q[j]
 pdq[k,4] <- q[j]
 }
 }
 }
 }
 return(pdq)
 return(pdq)

that should be it!

that should be it!

}
}

Figure 10 in report

Figure 10 in report

figLogNLogD<- function(){
figLogNLogD<- function(){

plot of diameter for quantile dq on Hdom with colours for stand density (spacing)

plot of diameter for quantile dq on Hdom with colours for stand density (spacing)

Maximum spacing to include given as <spc>

Maximum spacing to include given as <spc>

fig <- ggplot(data=pdx, aes(x=dg, y=nha, group=plotid))
fig <- ggplot(data=pdx, aes(x=dg, y=nha, group=plotid))
fig <- fig + geom_line(alpha=0.3, colour="red")
fig <- fig + geom_line(alpha=0.3, colour="red")

title and axis labels

title and axis labels

fig <- fig + labs(y="Tree per ha.", x="Quadratic mean diameter (cm)")
fig <- fig + labs(y="Tree per ha.", x="Quadratic mean diameter (cm)")

Stand Density Index Lines

Stand Density Index Lines

data points for sdi 200-1000, stocking 300 to 1500 sph

data points for sdi 200-1000, stocking 300 to 1500 sph

sdi_data <- data.frame(sdi=numeric(35), nha=numeric(35), dg=numeric(35))
sdi_data <- data.frame(sdi=numeric(35), nha=numeric(35), dg=numeric(35))
i=0
i=0
for (s in seq(from=200, to=1000, by=200)){
for (s in seq(from=200, to=1000, by=200)){
for(n in c(200, 300,600, 1000, 1500, 2000, 3000)){
for(n in c(200, 300,600, 1000, 1500, 2000, 3000)){
i <- i + 1
i <- i + 1
sdi_data[i,] <- c(s, n, fnInvSDI(n, s))
sdi_data[i,] <- c(s, n, fnInvSDI(n, s))
}
}
}
}
\#browser() \#debugging
\#browser() \#debugging

add sdi Lines

add sdi Lines

fig <- fig + geom_line(data=sdi_data, mapping=aes(x=dg, y=nha, group=sdi),
fig <- fig + geom_line(data=sdi_data, mapping=aes(x=dg, y=nha, group=sdi),
colour='blue', size=0.5, linetype='solid')
colour='blue', size=0.5, linetype='solid')

annotate SDI Lines at top

annotate SDI Lines at top

n=180
n=180
for(s in unique(sdi_data$sdi)){
for(s in unique(sdi_data$sdi)){
d = fnInvSDI(n,s)
d = fnInvSDI(n,s)
if(s>=1000) d <- d*1.03
if(s>=1000) d <- d*1.03
fig <- fig + annotate("text", x = d , y = n, size=3 , label = s)
fig <- fig + annotate("text", x = d , y = n, size=3 , label = s)
}
}
fig <- fig + annotate("text", x = 20 , y = n, size=3 , label = "SDI")
fig <- fig + annotate("text", x = 20 , y = n, size=3 , label = "SDI")

log scales with custom tick marks

log scales with custom tick marks

fig <- fig + scale_y_log10(limits=c(100,3000),
fig <- fig + scale_y_log10(limits=c(100,3000),
breaks=c(100, 200, 300,400, 500, 600, 700, 800, 1000, 1200, 1500, 2000, 3000),
breaks=c(100, 200, 300,400, 500, 600, 700, 800, 1000, 1200, 1500, 2000, 3000),
minor_breaks=NULL) +
minor_breaks=NULL) +
scale_x_log10(limits=c(2, 80), breaks =c (2, 3,4,5,6,7,8,9,10,15, 20, 25,30,40,50,60,70),
scale_x_log10(limits=c(2, 80), breaks =c (2, 3,4,5,6,7,8,9,10,15, 20, 25,30,40,50,60,70),
minor_breaks=NULL)
minor_breaks=NULL)
return(fig)
return(fig)
}
}
fnSDI <- function(d, sdi){
fnSDI <- function(d, sdi){

calculates points on the Stand Density Index line for a given SDI

calculates points on the Stand Density Index line for a given SDI

base diameter for SDI is 25 cm

base diameter for SDI is 25 cm

n <- (sdi*25^1.605)*d^-1.605
n <- (sdi*25^1.605)*d^-1.605
return(n)
return(n)
}
}
fnInvSDI <- function(n, sdi){
fnInvSDI <- function(n, sdi){

calculates points on the Stand Density Index line for a given SDI

calculates points on the Stand Density Index line for a given SDI

base diameter for SDI is 25 cm. Inverse form, returns d given n

base diameter for SDI is 25 cm. Inverse form, returns d given n

d<-((sdi*25^1.605)/n)^(1/1.605)
d<-((sdi*25^1.605)/n)^(1/1.605)
return(d)
return(d)
}

```
}
```


Annex C: Workhook structure and VBA code for the model

This includes the VBA code in the model. It can be seen by typing Alt-F11 in Excel. It is divided into 3 modules, as per the section headings.

Module GrowthFunctions

This module includes new equations developed as part of this project, and some old equations from the 2003 model. All these functions are self-contained and can be used in Excel as worksheet functions if desired.

```
Option Explicit
'--------- New functions for 2017 model from GW PSP data
Function qDiam(Hd As Double, qp As Double, nha As Double) As Double
'static function for diameter quantiles. Returns diameter in cm for
'quantile qp (0-1) of the diameter distribution, dominant height hd m and stocking
nha trees/ha
Dim mpt As Double 'average spacing, metres/tree
Dim lqp As Double 'Logit transform of qp
Dim invh As Double 'transform of hdom: 1/sqr(hdom)
Dim b As Variant 'array of coefficients
Dim lnD As Double 'predicted value is ln(dbh)
Dim bias As Double 'bias correction for log-transformed dependant variable
b = Array(4.308092, -5.739368, 0.066883, -0.06563, 0.497234, -0.09821, 0.017257, -
0.049239)
bias = Exp(0.1461 ^ 2 / 2)
mpt = Sqr(10000 / nha) 'transformation for n/ha
If mpt > 10 Then mpt = 10 'to avoid high values at very low stocking
lqp = Log(qp / (1 - qp)) 'transformation for quantile
invh = 1 Sqr(Hd) 'transformation for dominant height
'R formula for regression:
'Lnqd ~ invh + mpt + Lqp + invh.lqp + invh.mpt + mpt.lqp + invh.lqp.mpt
lnD = b(0) + b(1) * invh + b(2) * mpt + b(3) * lqp + b(4) * invh * lqp + _
    b(5) * invh * mpt + b(6) * lqp * mpt + b(7) * invh * lqp * mpt
qDiam = Exp(lnD) * bias
End Function
Function qDiamInc(si As Double, age As Double, qp As Double, nha As Double) As Double
'Diameter increment for site index si, age in years, diameter quantile qp,
'and stocking nha. Returns increment in cm year. Uses finite difference method
'based on qDiam function.
Dim Hd(0 To 1) As Double 'dominant heights over 1 year interval
Dim dbh(0 To 1) As Double 'estimated dbh at start and end of period
Dim t As Integer 'time index
For t = 0 To 1
    Hd(t) = Hdom(si, age - 1 + t) 't=0 is Last year, t=1 this year
    dbh(t) = qDiam(Hd(t), qp, nha)
Next t
qDiamInc = dbh(1) - dbh(0)
End Function
Function treeHeight(Hd As Double, dg As Double, dbh As Double) As Double
    ' gives individual tree height (ht, m) from tree dbh (cm) and stand
    ' dominant height (hd, m) and mean basal area diamtere (dg, dm)
    Dim rh As Double, rd As Double 'relative height, relative diameter
    rd = dbh / dg
    rh = 0.5385065 + 0.3713323 * rd
    treeHeight = rh * Hd
End Function
Function getSDI(nha As Double, dg As Double) As Double
'gets Stand Density Index
```

```
Const Dindex = 25 'index diameter for SDI
Const Rcoeff = 1.605 'Reineke coefficient
getSDI = nha * (dg / Dindex) ^ Rcoeff
End Function
'------------ Functions adopted from old Alder et al }2003\mathrm{ model
'Note that only Hdom, GetSI and selfThin are used in the GW model.
'V50bha, V10ubha and dg are retained as worksheet functions available
'for comparative analysis but are not used by the model itself.
Function Hdom(si As Double, age As Double) As Double
'height-age-site index function for Caribbean Pine
'per Alder et al , }2003\mathrm{ model
Dim m As Double, k As Double, a As Double
m = 0.48465 - 0.01784 * si
k = 0.0606
a = si / (1 - Exp(-k * 10)) ^ (1 / (1 - m))
Hdom = a * (1 - Exp(-k * age))^^(1 / (1 - m))
End Function
Function GetSI(Hd As Double, t As Double) As Double
'iterative solution for Pinus caribaea site index
Dim s1 As Double, s0 As Double, n As Integer
s1 = 20 'initial guess
'Loop until convergence
Do While Abs(s0 - s1) > 0.001
    s0 = s1
        s1 = Hd * ((1-Exp(-0.606)) / (1 - Exp(-0.0606 * t))) ^ _
        (1 / (0.01784 * s0 + 0.5153))
        n = n + 1
        If n > 1000 Then GetSI = -1: Exit Do 'stop if indefinite cycling
Loop
GetSI = s1
End Function
Function V5obha(Hd As Double, nha As Double) As Double
'yield (stand volume) function for Caribbean Pine
'for volume to 5 cm top, overbark, per ha
'per Alder et al , 2003 model, not used in this model except for comparison
Dim S As Double, vt As Double
S = Sqr(10000 / nha) 'mean tree spacing
vt = (0.493 * Log(S) + 0.282) * 0.000712 * Hd ^ 2.1673
V5obha = vt * nha
End Function
Function V10ubha(v5ob As Double, dg As Double) As Double
'gives volume underbark to 10cm top for Caribbean Pine given
'overbark volume to 5 cm top and mean diameter
'per Alder et al , 2003 model, not used in this model except for comparison
V10ubha = 0.23232 * dg ^ 0.30142 * v5ob ^ 1.02238
End Function
Function SelfThin(nha As Double, Hd As Double, Optional f As Double = 1#) As Double
'self thinning rule for Caribbean Pine
Dim Nlim As Double
Nlim = 232093 * Hd ^ -1.6055 * f
If Nlim < nha Then
        SelfThin = Nlim 'stocking reduced to self thinning Line
ElseIf nha > 0 Then
        SelfThin = nha 'stocking unchanged
Else
        SelfThin = 0 'may arise if thinning >standing stock
End If
End Function
Function dg(n As Double, v As Double) As Double
'estimates mean basal area diameter (Dg) from total volume (V)
'and trees/ha (N)
'per Alder et al , 2003 model, not used in this model except for comparison
dg = 42.17384797 * v ^ 0.31065768 * n ^ -0.342456151
End Function
```


Module MainProgram

This has the entry point for the model, procedure Run_Model, which organises and controls the simulation, and some subsidiary functions which cannot be run independently.
Run_Model can be executed from the Excel Alt-F8 key as well as the Update button, but will only operate correctly if the active sheet heading, rows 1-8 is formatted exactly as per Figure 11.

1 2
3
4
5
6
7
9

Dim si Ās Double 'site index
Dim yr0 As Integer 'starting year of simulation
Dim yrf As Integer 'final year of simulation
Dim hd0 As Double 'initial dominant height
Dim nha0 As Double 'initial stocking
Dim diam0(1 To 5) As Double 'initial diameter vector
Dim thin_mode As Integer 'mode for deciding to thin
Dim thinTH As Double 'thinning threshold, either BA (M2/ha) or SDI\%
Dim thinPct As Double 'percentage of trees to thin
Dim mvMinD(1 To 2) As Double 'minimum diameters for merchantable volume
Dim mvMinL(1 To 2) As Double 'minimum log length
Const StumpHt $=0.2$ 'assumed stump height for merchantable volume
Public Running As Boolean 'set true while model is running
Sub Run_Model()
'runs the model using data on the current sheet
Dim yr As Integer 'year loop index
Dim r As Integer 'output row index
Dim j As Integer 'general purpose loop index
Dim k As Integer 'a column index
Dim qp As Double 'quantile value
Dim dg As Double 'quadratic mean diam
Dim age As Double 'stand age.
Dim Hd As Double 'dominant height
Dim nha As Double 'current stocking
Dim vob As Double 'overbark total volume
Dim vim(1 To 2) As Double 'inside bark merchantable volume
Dim stvub As Double 'stump volume ub
Dim m As Integer 'merchantable volume index
Dim hm As Double 'merchantable height point for a tree/cohort
Dim hq As Double 'height for a diameter quantile
Dim dq As Double 'diameter quantile
Dim thinr As Double 'thinning ratio
Dim nthin As Variant 'no. of stems thinned, by diameter classes
Dim dthin As Variant 'quadratic mean diameters of thinning classes
Dim maiv(0 To 2) As Double 'MAI Volume for Vob, Vub class 1 and 2
'warns that sheet will be overwritten, or stops if sheet doesn't look right
model_setup 'read and check model parameters (aborts if an error)
Running $=$ True: [A5] = ""
$r=8$ 'output table starts in row 8
' age loop - outputs start at year 2 as year 1 figures not realistic
For yr = yr0 To yrf
'------ Worksheet columns A-C : age, dominant height, stocking --.-
'age
Cells $(r, 1)=y r$ age $=y r$ 'dominant height If yr > yr0 Then $\mathrm{Hd}=\operatorname{Hdom}(\mathrm{si}$, age) Else $\mathrm{Hd}=$ hd0 Cells(r, 2) $=\mathrm{Hd}$
'stocking

```
    If yr = yr0 Then
    nha = nha0
    Else
        'adjust stock for thinnings and self-thinning (Reineke Line)
        nha = Cells(r - 1, 3) - Cells(r - 1, 19) 'previous years stock less no. thinned
(col N)
    nha = SelfThin(nha, Hd) 'self-thinning may occur at high stocking
    End If
    'if stocking is less than 1 tree, exit simulation
    If Int(nha) <= 0 Then
        Range(Cells(r, 1), Cells(r, 10)).ClearContents
        Exit For
    End If
    Cells(r, 3) = nha
    '------ Worksheet columns F-J : diameter distribution ----
    'diameter distribution
    dg = 0
    For k = 1 To 5
    qp = Cells(7, k + 5) 'Percent of cum. diameter distribution
    'if post-thinning diameters, use them, otherwise last year
    If Cells(r, k + 5) > 0 And r>8 Then
                dq = Cells(r, k + 5)
            Else
            dq = Cells(r - 1, k + 5)
        End If
        If yr = yr0 Then
            If run_mode <> 3 Then
                    'for first row, use direct calculation of diameter
                    Cells(r, k + 5) = qDiam(Hd, qp, nha)
            Else
                    'except in mode 3, where diameter distribution is given
                    Cells(r, k + 5) = diam0(k)
            End If
        Else
            'add increment to previous diameter
            Cells(r, k + 5) = dq + qDiamInc(si, age, qp, nha)
        End If
        dg = dg + Cells(r, k + 5) ^ 2
        Next k
        '------ Worksheet columns D-E : Mean basal area diameter, basal area -----
        'Dg - quadratic mean diameter
        dg = Sqr(dg / 5)
        Cells(r, 4) = dg
    'basal area
    Cells(r, 5) = dg ^ 2 * 0.00007854 * nha
    '------ Worksheet columns K-M : Standing volumes, total and merchantable -----
    'standing volumes
    vob = 0: vim(1) = 0: vim(2) = 0
    'accumulate volume for each quantile diameter
    For k = 1 To 5
            'tree height corresponding to quantile diameter
            dq = Cells(r, k + 5)
            hq = treeHeight(Hd, dg, dq)
            vob = vob + vobTaper(hq, dq)
            stvub = vibTaper(Hd, dq, StumpHt)
            'merchantable heights
            For m = 1 To 2
                If hq > mvMinL(m) And dq > mvMinD(m) Then
                    hm = hmTaper(Hd, dq, mvMinD(m), 1) 'height to merch. diam ub point
                    'if there is a minimum length constraint, see if tree is OK
                    If (hm - StumpHt) >= mvMinL(m) Then
                    'add merchantable volume (Less stump volume)
                    vim(m) = vim(m) + vibTaper(Hd, dq, hm) - stvub
                End If
            End If
            Next m
    Next k
    'adjust for stocking per quantile (1/5 of total stocking)
    Cells(r, 11) = vob * nha / 5 'overbark volume in col. K
    Cells(r, 12) = vim(1) * nha / 5 'underbark class 1 volume in col. L
    Cells(r, 13) = vim(2) * nha / 5 'underbark class 1 volume in col. M
    '------ Worksheet columns N-R : Thinnings, rule, stems and volumes -----
    'write Stand Density Index
    Cells(r, 17) = getSDI(nha, dg)
```

```
    'if check thinning mode and threshold, if applicable
    thinr = 0 'reset from previous cycle
    Select Case thin_mode
    Case 1: 'control' by basal area (column 5)
        If Cells(r, 5) >= thinTH Then thinr = thinPct
    Case 2: 'control by SDI (column 17)
        If Cells(r, 17) >= thinTH Then thinr = thinPct
    Case 3: 'custom thinning specification
        thinr = Cells(r, 18)
    Case Else
        thinr = 0
    End Select
    'do thinning if required
    If thinr > 0 Then
        Cells(r, 18) = thinr 'write out thinning ratio
        Cells(r, 19) = nha * thinr 'no of trees thinned
        doThinning r, thinr, dthin, nthin
        'calculate and output thinning volumes
        vob = 0: vim(1) = 0: vim(2) = 0
        'accumulate volume for thinned diameter class
        For k = LBound(dthin) To UBound(dthin)
            'tree height corresponding to quantile diameter
            dq = dthin(k)
            hq = treeHeight(Hd, dg, dq)
            vob = vob + vobTaper(hq, dq) * nthin(k)
            stvub = vibTaper(Hd, dq, StumpHt)
            'merchantable heights
            For m = 1 To 2
                If hq > mvMinL(m) And dq > mvMinD(m) Then
                    'merchantable height
                    hm = hmTaper(Hd, dq, mvMinD(m), 1)
                    'check log at least minimum specified length
                    If (hm - StumpHt) >= mvMinL(m) Then
                            'add merchantable volume (less stump volume)
                            vim(m) = vim(m) + (vibTaper(Hd, dq, hm) - stvub) * nthin(k)
                    End If
                    End If
            Next m
        Next k
        'output thinned volumes
        Cells(r, 20) = vob 'overbark volume in col. P
        Cells(r, 21) = vim(1) 'underbark class 1 volume in col. Q
        Cells(r, 22) = vim(2) 'underbark class 1 volume in col. R
    End If
    '-------- Worksheet columns S-U : Mean Annual Volume Increment ----------
    'total standing volumes + previous thinned volumes
    For k = 0 To 2
    maiv(k) = Cells(r, k + 11)
    For j = 8 To r - 1
        maiv(k) = maiv(k) + Cells(j, k + 20)
        Next j
    Next k
    'convert to MAI : divide by age and output
    For k = 0 To 2
    maiv(k) = maiv(k) / age
    Cells(r, k + 14) = maiv(k)
    Next k
        r=r+1
Next yr
[A5] = ""
Running = False
End Sub
Private Sub model_setup()
'check parameter settings on the model sheet and gives warning message if wrong or missing
'returns TRUE of alL parameters seem OK, FALSE otherwise
'also sets internal variables with parameter values
Dim msg As String, crlf As String 'used form check messages, with newline separator
Dim i As Integer
Dim v As Double
'Loop index
    'a numeric value
Dim ch As Variant 'any character
Dim psr As Double 'planting survival rate
Dim erm As String, ern As Integer 'runtime error message and number
On Error GoTo ErrorHandler
```

```
crlf = Chr(13) + Chr(10)
```

crlf = Chr(13) + Chr(10)
'initial conditions mode
'initial conditions mode
ch = Left([A3], 1)
ch = Left([A3], 1)
If ch >= "1" And ch <= "3" Then
If ch >= "1" And ch <= "3" Then
run_mode $=$ CInt (Left([A3], 1))
run_mode $=$ CInt (Left([A3], 1))
Else
Else
$m s g=m s g+$ "Initial conditions option [A3] should be in range 1-3." + crlf
$m s g=m s g+$ "Initial conditions option [A3] should be in range 1-3." + crlf
End If
End If
'site index
'site index
si = CDbl([G3])
si = CDbl([G3])
If si < 14 Or si > 26 Then msg $=m s g+$ "Site index [G3] should be in range 14-26." + crlf
If si < 14 Or si > 26 Then msg $=m s g+$ "Site index [G3] should be in range 14-26." + crlf
'initial stocking
'initial stocking
nha0 $=$ CDbl([I3])
nha0 $=$ CDbl([I3])
If nha0 < 100 Or nha0 > 3000 Then msg $=m s g+$ "Initial stocking [I3] should be in range
If nha0 < 100 Or nha0 > 3000 Then msg $=m s g+$ "Initial stocking [I3] should be in range
100-3000 stems/ha." + crlf
100-3000 stems/ha." + crlf
'survival
'survival
psr = CDbl([K3])
psr = CDbl([K3])
If psr < 0.1 Or psr > 1 Then msg = msg + "Survival after planting [K3] should be in range
If psr < 0.1 Or psr > 1 Then msg = msg + "Survival after planting [K3] should be in range
10\% - 100\%." + crlf
10\% - 100\%." + crlf
'Last year of simulation
'Last year of simulation
yrf = CInt([K4])
yrf = CInt([K4])
'thinning calculation method
'thinning calculation method
Select Case Left([U2], 1)
Select Case Left([U2], 1)
Case "B": thin_mode = 1 'basal area control
Case "B": thin_mode = 1 'basal area control
Case "S": thin_mode = 2 'stand density index
Case "S": thin_mode = 2 'stand density index
Case "C": thin_mode = 3 'custom selection
Case "C": thin_mode = 3 'custom selection
Case Else: thin_mode $=0$ 'no thinning
Case Else: thin_mode $=0$ 'no thinning
End Select
End Select
'minimum thinning interval, only required in thin_mode>1
'minimum thinning interval, only required in thin_mode>1
If thin_mode > 0 And thin_mode < 3 Then
If thin_mode > 0 And thin_mode < 3 Then
thinTH $=$ CDbl([U3])
thinTH $=$ CDbl([U3])
If thinTH <= 0 Then $\mathrm{msg}=\mathrm{msg}+$
If thinTH <= 0 Then $\mathrm{msg}=\mathrm{msg}+$
"Thinning threshold [U3] mus̄̄ be more than zero" + crlf
"Thinning threshold [U3] mus̄̄ be more than zero" + crlf
thinPct = CDbl([U4])
thinPct = CDbl([U4])
If thinPct <= 0.2 And thinPct >= 0.67 Then
If thinPct <= 0.2 And thinPct >= 0.67 Then
$\mathrm{msg}=\mathrm{msg}+$ "Percent of trees to be thinned [U4] should be between 20-66\%" + crlf
$\mathrm{msg}=\mathrm{msg}+$ "Percent of trees to be thinned [U4] should be between 20-66\%" + crlf
ElseIf thin_mode $=3$ Then
ElseIf thin_mode $=3$ Then
For $\mathrm{i}=8$ To 36
For $\mathrm{i}=8$ To 36
If Cells(i, 18) < 0 Or Cells(i, 18) > 1 Then
If Cells(i, 18) < 0 Or Cells(i, 18) > 1 Then
$m s g=m s g+$ "Thinning ratio $\left[\mathrm{R}^{+}+\operatorname{CStr}(\mathrm{i})^{-}+\right.$
$m s g=m s g+$ "Thinning ratio $\left[\mathrm{R}^{+}+\operatorname{CStr}(\mathrm{i})^{-}+\right.$
"] must be between $0-100 \%$ " + crlf
"] must be between $0-100 \%$ " + crlf
Next i
Next i
End If
End If
'class definitions for merchantable volume
'class definitions for merchantable volume
For i = 1 To 2
For i = 1 To 2
$\operatorname{mvMinD}(i)=\operatorname{CDbl}(\operatorname{Cells}(3,15+i))$
$\operatorname{mvMinD}(i)=\operatorname{CDbl}(\operatorname{Cells}(3,15+i))$
$\operatorname{mvMinL}(i)=\operatorname{CDbl}(\operatorname{Cells}(4,15+i))$
$\operatorname{mvMinL}(i)=\operatorname{CDbl}(\operatorname{Cells}(4,15+i))$
If mvMinD(i) < 0 Or mvMinD(i) > 100 Then msg = msg + "Minimum top diameter for class "
If mvMinD(i) < 0 Or mvMinD(i) > 100 Then msg = msg + "Minimum top diameter for class "
$+\operatorname{CStr}(\mathrm{i})+"["+\operatorname{Chr}(82+i)+" 3]$ should be in range $0-100 \mathrm{~cm} "+\mathrm{crlf}$
$+\operatorname{CStr}(\mathrm{i})+"["+\operatorname{Chr}(82+i)+" 3]$ should be in range $0-100 \mathrm{~cm} "+\mathrm{crlf}$
If mvMinL(i) < 0 Or mvMinL(i) > 40 Then msg = msg + "Minimum log length for class " +
If mvMinL(i) < 0 Or mvMinL(i) > 40 Then msg = msg + "Minimum log length for class " +
$\operatorname{CStr}(\mathrm{i})+"["+\operatorname{Chr}(82+i)+" 4]$ should be in range $0-40 \mathrm{~m} "+\mathrm{crlf}$
$\operatorname{CStr}(\mathrm{i})+"["+\operatorname{Chr}(82+i)+" 4]$ should be in range $0-40 \mathrm{~m} "+\mathrm{crlf}$
Next i
Next i
'initial conditions for age, nha, hdom, diameter distribution
'initial conditions for age, nha, hdom, diameter distribution
Select Case run_mode
Select Case run_mode
Case 1 'start from age 2 - standard startup
Case 1 'start from age 2 - standard startup
yr0 $=2 \quad$ 'initial age
yr0 $=2 \quad$ 'initial age
hd0 = Hdom(si, 2\#) 'initial hdom
hd0 = Hdom(si, 2\#) 'initial hdom
nha0 $=$ nha0 $*$ psr 'initial stocking
nha0 $=$ nha0 $*$ psr 'initial stocking
For $\mathbf{i}=1$ To $5 \quad$ 'initial diameter quintiles
For $\mathbf{i}=1$ To $5 \quad$ 'initial diameter quintiles
$\mathrm{v}=0.1+(\mathrm{i}-1) * 0.2$
$\mathrm{v}=0.1+(\mathrm{i}-1) * 0.2$
diam0(i) = qDiam(hd0, v, nha0)
diam0(i) = qDiam(hd0, v, nha0)
Next i
Next i
Case 2 'use initial age, hdom, nha supplied, generate initial diam vector
Case 2 'use initial age, hdom, nha supplied, generate initial diam vector
yr0 = CInt([A8])
yr0 = CInt([A8])
hd0 $=\mathrm{CDbl}([\mathrm{B8}])$
hd0 $=\mathrm{CDbl}([\mathrm{B8}])$
'estimate site index, check in reasonable range
'estimate site index, check in reasonable range
si $=$ GetSI(hd0, CDbl(yr0))
si $=$ GetSI(hd0, CDbl(yr0))
If si < 10 Or si > 30 Then $m s g=m s g+$ "Please check initial height-age values [A8:B8]
If si < 10 Or si > 30 Then $m s g=m s g+$ "Please check initial height-age values [A8:B8]
are correct." + crlf
are correct." + crlf
[G3] = si
[G3] = si
nha0 $=$ CDbl([C8])
nha0 $=$ CDbl([C8])
'set initial diameter quintiles
'set initial diameter quintiles
For $\mathbf{i}=1$ To $5 \quad$ 'initial diameter quintiles
For $\mathbf{i}=1$ To $5 \quad$ 'initial diameter quintiles
$\mathrm{v}=0.1+(\mathrm{i}-1) * 0.2$

```
            \(\mathrm{v}=0.1+(\mathrm{i}-1) * 0.2\)
```

 \(\operatorname{diam0(i)}=q D i a m(h d 0, v\), nha0 \()\)
 Next
Case 3 'use initial age, hdom, nha and diameter quintiles supplied
yr0 $=\operatorname{CInt}([A 8])$
hd0 $=$ CDbl ([B8])
'estimate site index, check in reasonable range
si = GetSI(hd0, CDbl(yr0))
If si < 10 Or si > 30 Then $m s g=m s g+$ "Please check initial height-age values [A8:B8]
are correct." + crlf
[G3] = si
nha0 $=\operatorname{CDbl}([C 8])$
'set read and check diameter quintiles
For $\mathbf{i}=1$ To $5 \quad$ 'initial diameter quintiles
$\operatorname{diam0}(i)=C e l l s(8, i+5)$
If i > 1 Then
If diam0(i) <= diam0(i - 1) Then msg = msg + "Please check diameter values
[F8:J8] are correct." + crlf
End If
Next i
End Select
'check if any messages
If msg > "" Then
MsgBox msg, vbOK + vbCritical, vertext
GoTo AbortRun
End If
'check user wants to overwrite the current sheet
If MsgBox("The current sheet rows 8-36 will be updated with model outputs. Proceed?",
vboKCancel + vbQuestion, vertext) _
= vbCancel Then GoTo AbortRun
'clear output area (thinning not cleared if set manually, mode 1)
'clear table preparatory to output
[A8:Q100].ClearContents
[S8:V100].ClearContents
If thin_mode <> 3 Then [R8:R100].ClearContents 'column R reset except for custom thinning
'set lines and background colour for table
tableStyle 8, 8 + yrf - yr0, yr0
Exit Sub
ErrorHandler:
'handles run-time errors, most likely incompatible data types
erm = err.Description
ern $=$ err.Number
On Error GoTo 0
If MsgBox("Error " + CStr(ern) + ": " + erm + crlf + "Do you want to retry/debug?", _
vbYesNo + vbDefaultButton $2+$ vbCritical, vertext) $=$ vbNo Then
End If
Resume
AbortRun:
'exit point after error messages or selecting an abort option
[A5] = ""
Running = False 'flag for worksheet onchange handler
End
End Sub
Private Sub doThinning(r As Integer, thinr As Double, tdiam As Variant, tnha As Variant)
'Does a thinning of intensity <thinr> \% to be removed
'Results are calculated and written to table on row r
Dim tbias As Double 'bias effect on diameter distribution
Dim qDiam(0 To 6) As Double 'Pre-thinning quintile diameters
Dim qpre(0 To 6) As Double 'Pre-thinning quintile probabilities
Dim qpost(1 To 6) As Double 'Post-thinning quintile probabilities
Dim nha(1 To 2, 0 To 6) As Double 'stocking pre and post thinning by quintiles
Dim $x(1$ To 5) As Double, $y(1$ To 5) As Double 'used to estimate weibull parameters
Dim alpha As Double, beta As Double 'weibull parameters
Dim k As Integer
'set bias effect due to thinning (none if N/ha <100)
'Uses equation (4.4.6) from Alder, 1978, p. 41
If Cells(r, 3) > 100 And thinr < 0.8 Then 'if $N / h a>100$, or ratio<80\%
tbias $=(1 /(1-$ thinr $)) \quad$ 'use Alder, 1978 method
Else
tbias = $1 \quad$ 'otherwise, no bias
End If
'read quintile probabilities and diameters from workbook
For $\mathrm{k}=1$ To 5
qpre(k) $=(\mathrm{k}-1)^{*} 0.2+0.1 \quad$ 'probabilities $0.1,0.3,0.5,0.7,0.9$
$q \operatorname{Diam}(k)=C e l l s(r, k+5) \quad$ 'current diameter values
qpost $(k)=\operatorname{qpre}(k) \wedge$ tbias
Next k
'add 0 and 100% estimates for largest and smallest diams
qpre $(0)=0:$ qpre(6) $=1$
$q \operatorname{Diam}(0)=q \operatorname{Diam}(1) * 2-q D i a m(2)$ 'estimated smallest diam
$q \operatorname{Diam}(6)=q \operatorname{Diam}(5) * 2-q D i a m(4)$ 'estimated Largest diam
'stocking by quintiles pre- and post- thinning
nha $(1,6)=\operatorname{Cells}(r, 3) \quad$ 'pre-thin stocking
nha(2, 6) $=$ nha(1, 6) * (1 - thinr) 'post-thin stocking
'pre and post thin stocking by quintile diameter limits
For $\mathrm{k}=1$ To 5
$\mathrm{nha}(1, \mathrm{k})=\mathrm{nha}(1,6) * \operatorname{qpre}(\mathrm{k})$
nha $(2, k)=\operatorname{nha}(2,6) * \operatorname{qpost}(k)$
Next k
'get thinning frequencies and quadratic mean diams by classes
ReDim tdiam(1 To 6) As Double
ReDim tnha(1 To 6) As Double
For $\mathrm{k}=1$ To 6
tdiam(k) $=\operatorname{Sqr}((q \operatorname{Diam}(k-1) \wedge 2+q D i a m(k) \wedge 2) / 2)$
tnha $(k)=(n h a(1, k)-n h a(1, k-1))-(n h a(2, k)-n h a(2, k-1))$
Next k
'post thinning residual diameter distribution
If tbias > 1 Then
'use Weibull function to interpolate post-thinning diameter quintiles
For $\mathrm{k}=1$ To 5
$y(k)=\log (-\log (1-\operatorname{qpost}(k)))$
$x(k)=\log (q \operatorname{Diam}(k)-q \operatorname{Diam}(0))$
Next k
beta $=$ WorksheetFunction.Slope(y, x)
alpha = Exp(-WorksheetFunction.Intercept(y, x) / beta)
'calculate post-thinning standing diameters and write to row below current one
For $\mathrm{k}=1$ To 5
$\operatorname{Cells}(r+1, k+5)=q \operatorname{Diam}(0)+\operatorname{alpha} *(-\log (1-q p r e(k))) \wedge(1 /$ beta $)$
Next k
Else
'distribution is unchanged at low stocking
For $\mathrm{k}=1$ To 5
$\operatorname{Cells}(r+1, k+5)=q \operatorname{Diam}(k)$
Next k
End If
End Sub
Private Sub tableStyle(r1 As Integer, r2 As Integer, yr0 As Integer)
'does colour fill and lines for the main table
Dim rng As Range
Dim cols As Variant
Dim c As Variant, y As Integer, r As Integer
cols $=\operatorname{Array}(5,10,13,16,19)$
Set rng = Range(Cells(r1, 1), Cells(r1 + 100, 22))
'clear existing borders within table space
With rng
.Borders(xlEdgeLeft).LineStyle = xlNone
.Borders(xlEdgeRight).LineStyle = xlNone
.Borders(xlEdgeBottom).LineStyle = xlNone
.Borders(xlInsideHorizontal).LineStyle = xlNone
.Borders(xlInsideVertical).LineStyle = xlNone
.Interior.Color = xlNone
End With
'set table pale green
Set rng = Range(Cells(r1, 1), Cells(r2, 22))
rng.Interior.Color $=\operatorname{RGB}(226,239,218)$
'set vertical Lines
For Each c In cols
Set rng $=\operatorname{Range}(\operatorname{Cells}(r 1, c), \operatorname{Cells}(r 2, c))$
With rng.Borders(xlEdgeRight)
.LineStyle = xlContinuous
.Weight = xlHairline
End With
Next c
'set horizontal Lines
For $y=y r 0$ To $y r 0+(r 2-r 1)$
If y $\operatorname{Mod} 5=0$ Then 'Lines every 5th year
$r=y-y r 0+r 1-1$

```
431 Set rng = Range(Cells(r, 1), Cells(r, 22))
4 3 2 ~ W i t h ~ r n g . B o r d e r s ( x l E d g e B o t t o m )
                                    .LineStyle = xlContinuous
                    .Weight = xlHairline
        End With
        End If
Next y
'thick top and bottom borders to table
Set rng = Range(Cells(r1, 1), Cells(r1, 22))
With rng.Borders(xlEdgeTop)
    .LineStyle = xlContinuous
    .Weight = xlThick
End With
Set rng = Range(Cells(r2, 1), Cells(r2, 22))
With rng.Borders(xlEdgeBottom)
            .LineStyle = xlContinuous
            .Weight = xlThick
End With
    'create white areas
Range(Cells(r1, 1), Cells(r1, 3)).Interior.Color = xlNone
Range(Cells(r1, 6), Cells(r1, 10)).Interior.Color = xlNone
Range(Cells(r1, 18), Cells(r2, 18)).Interior.Color = xlNone
End Sub
4 5 4
455
```


Module TaperFunctions

This module contains functions for the Ata Marie (2105) taper equations. These can be used if required as worksheet functions.

```
'------- Uganda Caribbean Pine Taper functions from Ata Marie June 2015 study -------
'coding by Denis Alder (denis@validinternational.org) - September 2017
Function vobTaper(ht As Double, dbh As Double, Optional hm As Double = -1) As Double
    'Ata Marie Taper function - whole tree volume overbark
    'ht - Total height, dbh - Tree dbh (cm), hm - merchantable height (m)
    Dim b1 As Double, b2 As Double, g1 As Double, g2 As Double ' beta, gamma
coefficients
    Dim tL As Double, vtot As Double 'length from tip, volume of whole tree
    If \(\mathrm{hm}=-1\) Then \(\mathrm{hm}=\mathrm{ht}\)
    tL = ht - hm
    'whole tree volume
    b2 \(=6.28018\)
    g1 \(=4.42443\)
    \(\mathrm{g} 2=1.52747\)
    b1 = (1 - (b2 / (dbh * ht) ^ 0.3) * (1 - \(\left.1.3 / h t)^{\wedge} \mathrm{g} 2\right) /((1-1.3 / h t) \wedge(g 1\)
/ ht ^ 0.2))
    vtot = 3.14159246 * dbh ^ 2 / 40000 * ( (b1 / (ht ^ (g1 / ht ^ 0.2) * (g1 / ht ^
\(0.2+1)))^{*}(h t \wedge(g 1 / h t \wedge 0.2+1))+b 2 * h t \wedge(g 2+1) /((d b h * h t) \wedge 0.3 * h t\)
^ g 2 * \((\mathrm{g} 2+1))\) )
    If tL <= 0 Then
        'volume of whole tree
        vobTaper = vtot
    Else
        b2 \(=6.28018\)
        g1 \(=4.42443\)
        \(\mathrm{g} 2=1.52747\)
            \(\mathrm{b} 1=\left(1-(\mathrm{b} 2 /(\mathrm{dbh} * \mathrm{ht}) \wedge 0.3)^{*}(1-1.3 / \mathrm{ht})^{\wedge} \mathrm{g} 2\right) /((1-1.3 / \mathrm{ht}) \wedge\)
(g1 / ht ^ 0.2) )
            vobTaper = vtot - 3.14159246 * dbh ^ 2 / 40000 * ((b1 / (ht ^ (g1 / ht ^ 0.2)
* (g1 / ht ^ \(0.2+1)))^{*}(\mathrm{tL} \wedge(\mathrm{g} 1 / \mathrm{ht} \wedge 0.2+1))+\mathrm{b} 2 * \mathrm{tL} \wedge(\mathrm{g} 2+1) /((\mathrm{dbh} *\)
ht) ^ 0.3 * ht ^ g2 * (g2 + 1)))
    End If
End Function
Function vibTaper(ht As Double, dbh As Double, Optional hm As Double =-1) As Double
    'Ata Marie Taper function whole tree volume inside bark
    'ht - Total height, dbh - Tree dbh (cm), hm - merchantable height (m)
    Dim a0 As Double, a1 As Double, a2 As Double ' alpha coefficients
```

Dim b1 As Double, b2 As Double, g1 As Double, g2 As Double ' beta, gamma coefficients
Dim t1 As Double, t2 As Double 'intermediate terms repeated in main equation
Dim tL As Double, vtot As Double 'length from tip, volume of whole tree
If hm = -1 Then hm = ht
tL = ht - hm
b2 = 6.28018
g1 = 4.42443
g2 = 1.52747
a0 = 0.682537
a1 = 0.524777
a2 = -0.487183
t1 = g1 / ht ^ 0.2
t2 = (dbh * ht) ^ 0.3
b1 = (1 - b2 / t2 * (1 - 1.3 / ht) ^ g2) / ((1 - 1.3 / ht) ^ (g1 / ht ^ 0.2))
vtot = 3.14159246* dbh ^ 2 / 40000*
(a0 * b1 / (ht ^ (t1 + 0) * (t\overline{1}+1))* ht ^ (t1 + 1) _
+ a1 * b1 / (ht ^(t1 + 1)* (t1 + 2))* ht ^ (t1 + 2)-
+ a2 * b1 / (ht ^ (t1 + 2) * (t1 + 3)) * ht ^ (t1 + 3) _
+ a0 * b2 / (t2 * ht ^ (g2 + 0) * (g2 + 1)) * ht ^ (g2 + 1) _
+ a1 * b2 / (t2 * ht ^ (g2 + 1) * (g2 + 2)) * ht ^ (g2 + 2) _
+ a2 * b2 / (t2 * ht ^ (g2 + 2) * (g2 + 3)) * ht ^ (g2 + 3))
If tL <= 0 Then
vibTaper = vtot
Else
vibTaper = vtot - 3.14159246 * dbh ^ 2 / 40000 *
(a0 * b1 / (ht ^ (t1 + 0) * (t1 + 1)) * tL ^ (t1 + 1)
+ a1 * b1 / (ht ^ (t1 + 1) * (t1 + 2)) * tL^ (t1 + 2) -
+ a2 * b1 / (ht ^ (t1 + 2) * (t1 + 3)) * tL ^ (t1 + 3) _
+ a0 * b2 / (t2 * ht ^ (g2 + 0) * (g2 + 1)) * tL ^ (g2 + 1) _
+ a1 * b2 / (t2 * ht ^ (g2 + 1) * (g2 + 2)) * tL ^ (g2 + 2) _
+ a2 * b2 / (t2 * ht ^ (g2 + 2) * (g2 + 3)) * tL ^ (g2 + 3))
End If
End Function
Function dobTaper(ht As Double, dbh As Double, hm As Double) As Double
' gives Diam overbark hm metres above ground for tree of ht m height and dbh cm
' diameter. See page 11 (sect 3.2, eqn. 3) of Ata Marie 2015 report
Dim ltip As Double 'Length from tip to hm point
Dim b1 As Double, b2 As Double, g1 As Double, g2 As Double 'coefficients
If hm < 0 Or hm > ht Then dobTaper = 0: Exit Function
ltip = ht - hm
b2 = 6.28018
g1 = 4.42443
g2 = 1.52747
b1 = (1 - (b2 / (dbh * ht) ^ 0.3) * (1 - 1.3 / ht) ^ g2) / ((1 - 1.3 / ht) ^ (g1 /
ht ^ 0.2))
dobTaper = Sqr (dbh ^ 2 * (b1 * (ltip / ht) ^ (g1 / ht ^ 0.2) + (b2 / (dbh * ht)^^
0.3) * (ltip / ht) ^ g2))
End Function
Function dibTaper(ht As Double, dbh As Double, hm As Double) As Double
', gives Diam inside bark hm metres above ground for tree of ht m height
- and dbh cm diameter. See p.9 of Ata Marie 2015 report.
Dim ltip As Double 'Length from tip to hm point
Dim dob As Double 'overbark diameter at point hm on tree
Dim lth As Double 'Length (from tip) to height ratio
If hm < 0 Or hm > ht Then dibTaper = 0: Exit Function
ltip = ht - hm 'Length from tip
lth = ltip / ht \quad 'ratio of length from tip to total height
dob = dobTaper(ht, dbh, hm) 'overbark diameter
dibTaper = Sqr(dob ^ 2 * (0.682537 + 0.524777 * lth - 0.487183 * lth ^ 2))
'underbark diameter
End Function
Function hmTaper(ht As Double, dbh As Double, dm As Double, _
Optional ub As Boolean = False) As Double
'For tree of height ht m, dbh cm, solves for height of merchantable diam dm
'if ub set TRUE, uses underbark diam, otherwise uses overbark.
'uses bisection method to solve dobTaper or dobTaper equations.
'converges to 0.01 m height, fails if iterations <it> exceed 100
Dim hm As Double, h0 As Double, h1 As Double 'height median, lower and upper
estimates
Dim d0 As Double, d1 As Double ' diameters at h0, h1 heights

```
```

Dim d2 As Double ' median of $d 0$ and $d 1$
Dim it As Integer
'start intitally with h0 and h1 as base and tip of tree
$\mathrm{h} 0=0: \mathrm{h} 1=\mathrm{ht}: \mathrm{hm}=(\mathrm{h} 1-\mathrm{h} 0) / 2$
Do While it < 100 And Abs(h1 - h0) > 0.01 'termination conditions
'diameters of end points
If ub Then
'inside bark diameters (ub = TRUE)
d0 = dibTaper(ht, dbh, h0)
d1 = dibTaper(ht, dbh, h1)
Else
'overbark diameters (default)
d0 = dobTaper (ht, dbh, h0) d1 = dobTaper(ht, dbh, h1)
End If
$\mathrm{d} 2=(\mathrm{d} 0+\mathrm{d} 1) / 2$
If d2 > dm Then $h 0=h m$
Else
$\mathrm{h} 1=\mathrm{hm}$
End If
hm = (h1 + h0) / 2
it $=i t+1$
Loop
hmTaper $=$ Round(hm, 2) 'result only accurate to 2 dp End Function

```
```


[^0]: Valid International Ltd
 35 Leopold Street
 Oxford
 OX4 ITW
 United Kingdom
 validinternational.org

[^1]: ${ }^{1}$ Link address http://bit.ly/2ynRAIp. If inaccessible, email denis@validinternational.org for assistance. The file should be downloaded and run in Excel on the local computer. Do not attempt to use the online version of Excel - it will not run the macros.

[^2]: ${ }^{2}$ A sample spreadsheet How to get percentiles of diameter distribution.xls x can be downloaded from http:/ / bit.ly/2xrBHUp that illustrates the method.

[^3]: ${ }^{3}$ Wille Brink (willie@mto.group) and Gerard Lindner (gerard@microforest.co.za). 20 September 2017.

