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A Distance-Independent TreeModel for Exotic
Conifer Plantations in East Africa

DENIS ALDER

ABSTRACT. A simulation model of diameter increment and thinning for _Cupressus lusitanica, I
Pinus patula, and Pinus radiate growing in Kenya, Tanzania, Uganda, and Malawi is presented.
The diameter distribution is defined by a vector of diameters corresponding to fixed cumulative (
probability points. Increment of the diameter vector isa function of basal area relative to max
imum basal area, diameter relative to dominant diameter, and height as a site-dependent index of
age. A general algorithm for simulating thinning of the cumulative distribution is developed based
upon the probability that a given stem will remain after thinning. Validation studies using per
manent sample plot data for the 3 species show a standard deviation of percentage residuals for
total volume prediction of 12-19 percent; they also show, through simulation of spacing exper
iments; that the model is accurate over a range of initial stockings from 120 to 1,400 stems!
hectare. FOREST SCI. 25:59-71. -

ADDITIONAL KEY WORDS. Diameter distribution, maximum basal area, dominance.

DISTANCE-INDEPENDENT TREE MODELS, in the terminology of Munro (1974), are
those which are based upon a vector of tree diameters or diameter classes'; but
where the competitive stress of each tree or class does not require positional
information about the trees. Such models assume therefore a close correlation
between tree and stand variables and tree competitive status. The method is
normally applied to the simulation of growth and yield in ,plantations which are
even-aged and monospecific. Published examples are Clutter and Allison (1974),
Gibson and others (1969), and Opie (1972).

In this work, a method is presented for modelling tree growth in which the
vector of tree diameters is represented by tabulated points of a cumulative di
ameter distribution. It arose from the need to develop a fast, efficient, and com
pact model which would still provide detailed diameter distribution information,
which could be adapted to different types of thinnings, and which would respond
accurately over a very wide range of treatment. The result has been the emer
gence of the conceptual advances which are presented in this paper. 1

The data used to determine the empirical species-dependent coefficients of the
model were d,erived from permanent sample plots in exotic coniferous plantations
in Kenya, Tanzania, Uganda, and Malawi. So far, parameters have been deter
mined for three species-Pinus patula Schlect & Cham., Pinus radiata D. Don,

1 Other aspects of the model are described in •.A growth and management model for coniferous
plantations in East Africa," D. Alder, 1977, Unpublished Ph.D. thesis, Oxford Univ. 97 p.

The author i~ a Research Officer at the Unit of Tropical Silviculture, Department of Forestry.
Oxford University, South Parks Road, Oxford OX13RB, UK. The work was financed by the United
Kingdom Ministry of Overseas Development. The author gratefully acknowledges theesseritial as
sistance of Valerie J. Bowman, who was responsible for the figures and bibliographic research. He
also wishes to thank Mrs. Hilda Pengelly for typing the manuscript. Manuscript received 7- March
1978.

VOLUME 25, NUMBER 1, 1979 / 59



Standing basal

80 (m 2/ha)

70

60

50

40

30

20

10

o

area

basal area

o 5 10 15 20 25 30 35 40

Dominant Height (m )
FIGURE 1. Hand-drawn maximum basal area line for Pinus patula permanent sample plots in Kenya.

and Cupressus lusitanica Mill. These three together form industrial plantations
of approximately 200,000 ha in Kenya, Tanzania, and Malawi, and provide the
basis for three distinct pulpwood schemes.

METHODS

Within the model, the distribution of diameters was represented by a vector of
diameter values such that each corresponded to a distinct cumulative probability
that that diameter would not be exceeded. Thus we have-

D ~ [d" d2 ••• d.]
P = [p"p, . . . P.]

so that there is a probability Pi that any diameter sampled at random from the
stand will be less than d.. The total number, n, of elements in the vectors D and
P, represents the discrimination of the model, and has been set to 10 in the
current formulation. The probabilities of the Pi can be determined from their
subscript and the value of n by

P, = (i - 'h)/n, (I)

which with n as 10 gives implicit values for the P, of

P = [0.05,0.15,0.25 ... 0.85,0.95].

If diameter increment increases monotonically with diameter for a given stand,
the ranking of trees within the cumulative distribution is unaltered by increment.
In this case, a function can be applied to the elements of the cumulative distri
bution vector D to estimate stand growth as if the elements were individual tree
diameters.

The prediction of increment for a given diameter requires that three main effects
should be taken into account. These are site, age, and competitive status. In
practice, these factors are complex and composed of a number of subcomponents.
In this model, the effect of site and age were largely unified into a single metric
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TABLE 1. Coefficients for the limiting basal area function (see equation (2) in
text).

Coefficient

a
b
c

P. patula P. radiata Cupressus sp.

67.8 86.3 63.9
0.1292 0.03382 0.1219
2.597 1.198 2.551

Note: Criteria of goodness of fit are not quoted as the function is based upon a hand-drawn curve
enveloping permanent plot standing basal area data (see text), and hence such criteria would be
meaningless in this context.

by the use of stand dominant height as a basic predictor variable for increment.
Dominant height is itself determined within the model by a site- and age-dependent
relationship which will not be discussed here.

The competitive status of a stand as whole can be considered as the ratio
between the current basal area of the stand and the maximum basal area occur
ring at that site and age. In this model, little empirical information was available
on maximum basal area as few older plots occurred at higher stockings. However,
speculative hand-drawn curves which enveloped the maximum observed basal
area values for a given species were tabulated against dominant height. An ex
ample, for Pinus patula, is shown in Figure I. The Richards generalized growth
function (cf. Pienaar and Turnbull 1973) was found to provide a suitable fit to
points taken from this hand-drawn maximum basal area line. The function is

Gm= = a·(l - exp[-b'H])' (2)

where Gm= is maximum basal area, and a, b, and c are species-dependent em
pirical coefficients, whose values, fitted by nonlinear least squares, are shown in
Table I.

A measure of relative basal area q was defined such that at the maximum basal
area, q was zero; whilst below the maximum it was positive, tending asymptot
ically to I as the stocking approached zero. Thus

q = 1 - G/Gmax (3)

where G is the standing basal area. The relative basal area defines the potential
for growth of the stand as a whole. It is obvious that a lower value of basal area
on a given stand implies higher q. Less obviously, a lower dominant height at a
given basal area means a smaller Gmax and hence lower q, and lower growth
potential. In this way, q becomes dependent on site, as reflected in height growth
at a given age; at a given basal area, a poorer site will have a lower Gm= and
hence lower q.

For a single stand at a given relative basal area, the differences in competitive
status among trees can be largely accounted for in terms of the ratio of the
diameter of the tree to the mean diameter of the dominant trees. This is termed
the dominance ratio r, by definition:

(4)
I
I where d, is any given diameter class, and D dom the mean dominant diameter." Thus

a dominant tree will have r = I. An emergent above the general level of the
canopy will have r greater than 1. The empirical relationship observed between
dominance and increment is shown by Figure 2. Here tree increment data from

2 Dominant diameter is the mean diameter of 100 thickest stems/ha.
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FIGURE 2. Mean diameterincrement of cells definedby dominance ratioanddominant heightclasses

for Pinus potula.

permanent sample plots were tabulated into classes defined by dominance and
stand dominant height. Typically each point on the graph represents the mean of
several hundred or thousand increment estimates.

Tree increment will also depend on age and site independently of stand density
and tree dominance. This relationship was studied by tabulating the increment of
dominant trees for classes of stand dominant height. The results are shown for
Pinus patula permanent sample plots in Figure 3. A number of exponential decay
functions can be fitted to this type of curve, of which the most suitable appeared
to be

Ad, = a + boo exp[ -b,B] (5)

where Ad, is diameter increment and a, bo, and b , are the fitted coefficients. This
model was then extended to incorporate dominance r and stand relative basal
area q. A number of extensions were studied, not only with reference to the
goodness of fit to the increment data tabulated by H, r, and q classes, but also
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FIGURE 3. Mean diameter increment for dominant trees classified by stand dominant height for
Pinus patula.

as they affected the behaviour of the model as a whole. The final choice was

Sd, = a + bo'exp[H'(b, + bvr + b,.q + b4'rq)] (6)

The general behaviour of equation (6) can be understood qualitatively in terms
of interacting growth processes. It is basically an exponential decay, from a value
at H = 0 of (a + bOi. The asymptotic minimum increment is given by a. The
multiplier to the H in the main bracket controls the rate of decline of increment.
It is a linear function of the dominance of the tree r and the relative basal area
q and their interaction. From Table 2 it can be seen that the coefficients b, and
b 3 are positive. The effect is that an increase in dominance or in relative growth
potential both result in a decrease in the rate at which increment declines with
H; or, at a given H, an increase in either dominance or growth potential results
in an increase in predicted increment. The negative interaction of rq (b 4 in Table
2) is due to the fact that at wider spacings (higher q) the same numerical change
in r will denote a smaller real difference in competitive status than at a closer
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TABLE 2. Coefficients for the diameter increment model (see equation (6) in
text).

Species

P. patula
P. radiata
Cypress

a

0.1818
0.0
0.1812

b, b, b,

3.499 -0.2306 0.1492
1.008 -0.1532 0.1629
2.936 -0.2054 0.1477

b,

0.1478
0.0948
0.1100

b, N R'

-0.1ll2 1,663 0.54
-0.0854 1,834 0.59
-0.0894 1,438 0.60

Note: The parameters for the P. patula and cypress equations were fitted using iterative nonlinear
least-squares estimation. This iterative method was unstable for the P. radiata data, for which the
a parameter was poorly defined. In this case, a was assumed to be zero, and direct linear least
squares estimation used for fitting the other parameters. N is the number of tabulated data cells, not
the number of raw tree increment observations. Tabulated means, rather than raw observations,
were used in order to weight the regression in favour of the rarer plots at nonnormal stand densities;
and to reduce the effect of the two level nesting (plot, tree) of increment data on the parameter
estimates.

spacing. Thus the relative importance of dominance becomes less as the stand
tends toward more open growing conditions. Table 2 gives the coefficients for
equation (6) for the three species. The statistics given refer to the fit to tabulated
values, and not to the raw data, for which the variances would be higher and the
coefficient of multiple determination (R') lower.

In the simulation model, the application of equation (6) was modified by im
posing two constraints. Firstly, the value of r was not permitted to exceed 1.2;
or more precisely, if r was greater than 1.2, then 1.2 was used instead of the
actual value for determining the increment of a given class. This limit of 1.2 for
dominance was determined as the maximum observed in the data, with the ex
ception of a few rare anomalies. Without this constraint, positive feedback could
occur which results in excessively high increments being predicted, Secondly, q
values for a stand were not permitted to become less than zero. Instead, after
increment had been added to the vector D, the basal area G was compared with
Gmax as estimated from the dominant height H at the end of the growth period.
If G was greater than Gmax then the diameters were reduced by the multiplier
~(GmaJG). Consequently, at high stockings the model may attain, but not ex
ceed, the maximum basal area.

A general method of simulating the effect of thinnings on the vector of diam
eters D corresponding tothe fixed cumulative probabilities P was required. As
a first stage, the distribution of thinnings is defined in terms of two variables:

I-The probability that any given stem in the stand will be left after thinning.
p-The proportion of the total stocking smaller than any given stem.

The relationship between 1 and p can be determined empirically for different
types of thinning, Some examples of the types of relationships that might be
expected are illustrated in Figure 4. In low thinning, small stems have a high
probability of removal, which declines progressively, until the largest stems are
almost certain to be left. Row or mechanical thinning on the other hand gives any
stem an equal probability of being removed. Crown thinning could produce var
ious effects, depending on the way it is applied, In the example illustrated in
Figure 4 it is envisaged that competitors to selected dominants are being removed,
leaving a higher residual proportion of suppressed and dominant trees, and a
relative depletion of the codominant and intermediate fractions.

The total proportion of the stocking prior to thinning that is left afterwards will
be the integral of 1 with respect to p-in effect the sum of the probabilities of
remaining for all the trees on the stand,
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FIGURE 4. Some possible relationships between the probability of a tree remaining after thinning,
and its diameter cumulative probability.

(7)

L is termed the leave fraction, and is the ratio of the stocking after thinning to
the stocking before thinning.

Now consider the effect of a thinning upon the vector P. The proportion of the
stand left after thinning up to a diameter d, corresponding to a cumulative prob
ability p; will be

I
P ,

F(l) = 0 I· Bp,

(8)

or in other words the sum of the probabilities of the removal of all trees up to
this limit. F(l) is the cumulative probability in terms of before thinning stocking
corresponding to the diameter d.. Expressing this as a proportion of stocking
after thinning we scale by the leave fraction L-

iP,

p*; = 1IL· ol'oP,

where p*; is the cumulative probability after thinning corresponding to the di
ameter d.. Provided the function I = tip) is readily integrable, then equation (8)
is easily applied to the vector P of before-thinning cumulative probabilites to
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FIGURE 5. The effect of total leave fraction L upon thinning distribution for the hypothetical low
thinning regime represented by equation (9).

obtain a vector P" of values after thinning. The vector D remains at this stage
unchanged. In the simulation model, a new vector of diameters D* corresponding
to the standard probability intervals is generated from D and P" using a linear
interpolation procedure. This latter step is not of any theoretical interest, but
does allow computer storage requirements to be greatly reduced when a large
number of stands are being simulated simultaneously, since only the D vector
need be retained for each stand. The P values are implicit in equation (I).

Empirical data concerning thinning distributions were not available at the time
of this study, and instead certain assumptions were made in order to provide a
useful model. Two basic types of thinning were simulated. The first is row or
mechanical thinning, and the second is low selective thinning. It is self-evident
that with row thinning (or any thinning that is unbiased or "neutral" with regard
to stem size) the diameter distribution of the stand will not significantly change,
and hence we would expect that

This result can be derived from equations (7) and (8) by noting that

I is constant with respect to p, say I = c,

,

and hence
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L = J: c-Bp

=e

and therefore

1= L.
Substituting into equation (8) we have

rPi' ~ ilL.). L'[Jp

< p«.

from equation (7)

(10)

"

Thus with row thinning neither the diameter vector D nor the probability vector
P is altered; only the total stocking changes.

For low thinnings, the distribution was assumed to follow a family of power
curves described by the function

I = p", (9)

These are illustrated for different leave fractions in Figure 5. In this distribution,
a large tree is much more likely to remain after thinning than a small one. The
degree of selectivity depends on the intensity of thinning. At low thinning inten
sities there is a high proportion of removals among the smallest stems, with very
little effect on the larger fraction. At higher intensities, the distribution of thin
nings tends to become more even. From equation (7) we have

L = fv·[Jp,

and hence

L = lI(e + I);

thus

c = ilL - I

and the relationship (9) can be rewritten as

1= plfL-l.

Equation (8) then becomes, by substitution of (10) and integration

p', = ut: PiW L - D • (11)

Equation (II) is the function used to simulate the thinning treatments discussed
in the next section.

RESULTS

Three types of validation were performed on the model. These were, firstly, the
mass simulation of all permanent sample plots which contributed data to the
model; secondly, the simulation of some spacing experiments which were geo
graphically remote from the main sources of data, and whose results were not
used during function development; and thirdly, some detailed studies of specific
thinning cases.

The results of the mass simulation of permanent sample plots is shown in Table
3. In this case a single statistic was selected for comparison between model
predictions and observed growth. Each simulation run was of one permanent
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FIGURE 6a. Simulated and actual total volumes for two thinning experiments in Tanzanie-c-Experi
ment 345, Pinus patula.

sample plot. The initial conditions of height and diameter distribution were those
actually observed. Thinnings were defined in terms ofleave fraction (i.e., stocking
after thinning divided by stocking before thinning). The actual thinnings observed
on each plot were used to set the thinning schedule for the simulator. The devia
tion of predicted total volume from observed total volume was computed for each
remeasurement, and expressed as a percentage of the predicted volume. That is

E = (Vo - V,)IV, %

where Vo and V, are the observed and simulated total volumes respectively. E is
the percentage residual. These residuals were tabulated by species and remea
surement number; the mean residual or net bias, and the standard deviation of
the percentage residuals are the statistics shown for each species in Table 3. The
number of plots involved for a given cell of the Table are also shown.

Table 3 shows that the bias in total volume prediction is negligible. The standard
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FIGURE 6b. Simulated and actual total volumes for two thinning experiments in Tanzania-Exper
iment 661, Pinus patula.

deviation of the percentage residuals is approximately 12 percent for cypress, 18
percent for P. radiata, and 19 percent for P. patula. This appears to be a similar
order of precision to that obtained for these data with aggregate yield models of
the type developed by Wanene (e.g., 1975, 1976). Given the magnification of bias
which occurs in finite difference systems when they are integrated, this is a useful
achievement. We may note, therefore, that the model is at least as accurate in
predicting total volume as an aggregate stand model constructed with the same
data; it is also of course much more flexible and provides considerably more
detailed information about the stand.

Figures 6(a) and 6(b) show the results from simulations of two spacing exper
iments on P. patula in Tanzania. Both are designed in a similar manner, and
involve establishment at approximately 1,600 stemslha (or 900 stemslha for the
lowest stocking treatments) with frequent thinnings ahead of competition between
the third and eighth years until the final stocking for that treatment is reached.
Experiment 345 is a clinal design with 8 treatments; 3 intermediate treatments are
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omitted from Figure 6(a) for clarity. Experiment 661 is a randomized block design
with 4 treatments. Further details are given in Adlard and Alder (1976).3

Both figures show that prediction of total volume by the simulator is quite
accurate over a very wide range of competitive stress. The lowest stockings are
essentially free of intertree competition, while the high density stands are close
to the limiting basal area line. No systematic bias is apparent, with the possible
exception of a tendency to produce too great an increment at the highest stocking.
The importance of this particular validation is that it tests the model's response
on a set of data that is independent from that used to develop the model, as well
as covering a very wide range of spacing, and two distinct site indices (as can be
seen, volume production on experiment 345 is considerably higher than that for
experiment 661). Unfortunately, similar independent experimental data for the
other two species was not available at the time of writing.

Figure 7 shows how the simulated diameter distribution responds to thinning.
The data are from cypress permanent sample plot 279 in Kenya, which was
initially stocked at 1,430 stems/ha, and subsequently thinned at 8 years down to
940 stems/ha and at 13 years to 520 sterns/ha. This corresponds more or less to
normal thinning treatment for sawlog stands in the area. Figure 7 shows the actual
cumulative frequency distribution prior to first thinning, at 6.5 years, and shortly
after first and second thinnings, at 8.5 and 13.5 years respectively. The simulation

3 Adlard, P. G., and D. Alder. 1976. The use of models for the evaluation of spacing and thinning
effects in fast-growing conifers. Discussion paper for Group 2.02 XVIth IUFRO World Congress,
Oslo, 1976.
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TABLEJ. Bias and standard deviation ofpercentage differences in total volume
between observed and simulated permanent plots.

Remea- Cupressus sp. Pinus radiata Pinus patuLa
sure-
ment no. N Bias s.d. N Bias s.d. N Bias s.d.

Percent Percent Percent Percent Percent Percent

1 160 3.3 12.6 169 -1.0 9.9 166 2.7 16.4
2 152 0.7 10.4 169 2.9 14.9 162 4.5 18.7
3 148 0.7 11.5 159 5.4 16.8 128 5.7 20.1
4 143 0.6 10.3 157 3.9 19.0 122 4.2 18.0
5 127 0.1 12.1 155 2.8 18.5 116 5.8 17.5
6 116 0.0 12.7 155 4.2 19.6 112 5.0 17.2
7 103 1.3 12.2 127 2.2 21.1 105 3.1 16.2
8 95 2.1 14.9 122 0.5 20.5 102 1.0 17.8
9 88 1.0 16.5 103 0.3 19.5 100 0.8 19.1

10 73 1.7 16.7 72 0.2 20.7 92 -0.8 19.1
11 35 -7.4 13.0 56 1.0 20.7 54 -4.4 21.1
12 17 -13.1 15.2 30 3.0 18.7 14 11.7 32.8

Note: N is the number of plots contributing to a given estimate of bias and standard deviation.
Bias percent is the mean of the differences between observed and simulated volumes, expressed as
a percentage of the simulated volume. s.d. is the standard deviation of these percentage differences.

uses a site index and production class (i.e., initial basal area) estimated from the
plot, and uses the same thinning history as the plot. However, the distribution
of thinnings is based upon the assumed relation given in equations (9) and (II).
It can be seen from Figure 7 that there is a close correspondence between the
actual and the simulated distributions. However, prior to the first thinning the
actual distribution is somewhat flatter than the simulated one; whilst at each of
the thinnings it appears that a rather higher proportion of intermediate stems and
a lower proportion of the most suppressed trees are removed in the actual thin
ning, as compared with the simulated one.

The model presented here appears to provide a sound basis for predicting yields
from a wide variety of thinning regimes for the species studied. It is sufficiently
compact and efficient to provide a means for direct updating and projection of
forest inventory records. As such, it fulfills a major niche in growth and yield
prediction for the tropical highland conifers of East Africa and Malawi.
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